title
Description
Body
У нас пацанчик решил по понтоватся и задал нам задачку надо нарисовать такую фигуру не отрывая руки боле 2 раз и не проводя по одной и той самой линии.
Я чет нефига не могу. Он шампанское обещал. Вот мне интерестно возможно ли это?
Отредактировано TLENS (2011.06.05 09:54)
Неактивен
Вот еще подкину
В принципе, очень известные...
.:Google::Теории графов:.
> Графами были названы схемы, состоящие из точек (вершины графа) и соединяющих эти точки отрезков прямых или кривых (ребра графа). Одна из разновидностей на рис. выше.
> Степень вершины - количество ребер графа, исходящих из этой вершины.
> Вершина называется нечетной - если степень этой вершины нечетная, четной - если степень этой вершины четная.
Закономерности:
- Если все вершины графа четные, то можно не отрывая карандаш от бумаги («одним росчерком»), проводя по каждому ребру только один раз, начертить этот граф. Движение можно начать с любой вершины и закончить его в той же вершине. Фигура (граф), которую можно начертить не отрывая карандаш от бумаги, называется уникурсальной.
- Граф, имеющий всего две нечетные вершины, можно начертить, не отрывая карандаш от бумаги, при этом движение нужно начать с одной из этих нечетных вершин и закончить во второй из них.
- Граф, имеющий более двух нечетных вершин, невозможно начертить «одним росчерком».
.:Перерисовал, для наглядности:.
Отредактировано tipsun (2011.06.05 11:32)
Неактивен
http://acadclasses.narod.ru/math/lecture5.htm - см. утверждение 1 и 2
- - - -
Как я понял:
У данного графа 8 вершин.
2n=8 (Вершин) <=> n=4 (Пар)
Можно нарисовать лишь при n-1 <=> 4-1=3 "отрывании ручки от пути".
- - - -
Но у меня не получилось.
Только при 4 отрываниях получается.
Для 4 вершин все сходится... Ну квадрат с диагоналями.
Отредактировано tipsun (2011.06.05 18:39)
Неактивен