

Web Application
Development with
Yii and PHP
Second Edition

Learn the Yii application development framework by
taking a step-by-step approach to building a Web-based
project task tracking system from conception through
production deployment

Jeffrey Winesett

BIRMINGHAM - MUMBAI

Web Application Development with
Yii and PHP
Second Edition

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First Edition: August 2010

Second Edition: November 2012

Production Reference: 1121112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-872-7

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

Credits

Author
Jeffrey Winesett

Reviewers
Wojciech Bancer

Carsten Brandt

Brett Gregson

Stephan Hohmann

Alexander Makarov

Acquisition Editor
Usha Iyer

Lead Technical Editors
Sonali Tharwani

Sweny M. Sukumaran

Technical Editor
Sharvari Baet

Copy Editors
Insiya Morbiwala

Laxmi Subramanian

Brandt D'Mello

Aditya Nair

Project Coordinator
Leena Purkait

Proofreader
Maria Gould

Indexers
Monica Ajmera Mehta

Tejal R. Soni

Rekha Nair

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Jeffrey Winesett has over ten years of experience building large-scale, web-based
applications. He has been a strong proponent of using open source development frameworks
when developing applications, and a champion of the Yii framework in particular since its
initial alpha release. He frequently presents on, writes about, and develops with Yii as often
as possible.

I would like to thank Qiang Xue for creating this amazing framework, and
the entire Yii framework development team who continually improve and
maintain it. I thank all of the technical reviewers, editors, and staff at Packt
Publishing for their fantastic contributions, suggestions, and improvements.

I would also like to thank my family, who have provided encouragement
and unconditional support, and to my many colleagues over the years for
providing invaluable opportunities for me to explore new technologies,
expand my knowledge, and shape my career.

About the Reviewers

Wojciech Bancer has a Master's Degree in Computer Science. He has over ten years of
experience in web application development. In 2007, after passing the Zend exam, he gained
a Zend Certified Engineer for PHP5 certificate. Wojciech started his career developing web
applications in PHP4 and PHP5 as a freelancer. Later, he started working for a digital media
agency in London, where he was introduced to various PHP frameworks and agile processes.
Currently, he is a technical consultant for ORM London working on a range of web, mobile,
and touch projects.

To my wife and son, I wish them the best.

Carsten Brandt has been a freelance PHP developer for many years. He founded his own
ISP company providing web development and hosting services in 2007. Together with his
wife and little son, he is currently living in Berlin, Germany and studying Computer Science at
Technische Universität Berlin.

He first started with Yii in 2010 and has contributed heavily to the yiiext extension repository
http://yiiext.github.com/ since then. After Yii moved to GitHub, he started contributing
to the Yii framework code too, and since August 2012 he has been an active member of the Yii
framework developer team.

I would like to thank my beloved wife Mila for letting me do open source
work in my free time, and not arguing too much when I stay late for doing
work I don't get paid for.

I would also like to thank Qiang Xue for creating this great framework, and
Alexander Makarov, Maurizio Domba, and all other contributors for their
active and valuable contributions, keeping Yii fast and solid.

Brett Gregson is a PHP/iOS software developer based in South Africa. His main area of
expertise is user interface design and user experience. He is a big fan of the Yii framework
and jQuery. He currently works at RAW Media Concepts in Johannesburg, South Africa.

Stephan Hohmann, having been raised in the reach of an 8086 IBM PC, had his
career choice set in his early ages. After toying around with a plethora of programming
languages and operating systems, Stephan has now settled mostly for Fedora Linux and
web programming with PHP (for the time being). He is currently involved in making the Yii
framework better and creating formidable applications with it.

Alexander Makarov is an experienced engineer from Russia, and a member of the Yii
framework core team since 2010. He is the author of another book on the Yii framework
called Yii 1.1 Application Development Cookbook, Packt Publishing.

Thanks to my family for being patient with me as I took up yet another
project and spent less time with them.

Thanks to the Yii community for their encouragement and contributions. It
would not have been possible to get free time if we were creating Yii without
all these pull-requests at Github. You're the best!

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Meet Yii	 9

Easy	 10
Efficient	 10
Extensible	 11
MVC architecture	 11

Model	 12
View	 12
Controller	 13

Stitching these together: Yii request routing	 13
Blog posting example	 14

Object-relational mapping and Active Record	 16
Active Record	 16

The view and controller	 17
Summary	 18

Chapter 2: Getting Started	 19
Installing Yii	 19

Installing a database	 22
Creating a new application	 23
"Hello, World!"	 26

Creating the controller	 26
Configuring Gii	 26

One final step	 30
Reviewing our request routing	 31

Adding dynamic content	 32
Adding the date and time	 32
A different approach for adding the date and time	 33

Moving the data creation to the controller	 33

Table of Contents

[ii]

Have you been paying attention?	 34
Linking pages together	 35

Linking to a new page	 35
Getting a little help from Yii CHtml 	 37

Summary	 38
Chapter 3: The TrackStar Application	 39
Introducing TrackStar	 39
Creating user stories	 40

Users	 40
Projects	 40
Issues	 41

Navigation and page flow	 42
Data relationships	 43
Creating the new application	 45
Connecting to the database	 46

Yii and databases	 46
Testing the database connection	 49

Using the interactive shell	 49
Automated testing – unit and functional tests	 50

Unit and functional testing	 50
Benefits of testing	 50
Testing in Yii	 51
Unit tests	 52

Installing PHPUnit	 52
Testing the connection	 53

Summary	 54
Chapter 4: Project CRUD	 55
Feature planning	 55
Creating the project table	 56

Yii database migrations	 57
Naming conventions	 60

Creating the AR model class	 61
Configuring Gii	 61
Using Gii to create our Project AR class	 62

Enabling CRUD operations for projects	 65
Creating CRUD scaffolding for projects	 65
Creating a new project	 68

Form field validation	 69
Reading the project	 73
Updating and deleting projects	 74

Table of Contents

[iii]

Managing projects in Admin mode	 74
Summary	 77

Chapter 5: Managing Issues	 79
Feature planning	 79
Designing the schema	 80

Defining some relationships 	 81
Building objects and their relationships	 81
Creating active record model classes	 84

Creating the Issue model class	 85
Creating the User model class	 85

Creating the issue CRUD operations	 85
Using the issue CRUD operations	 86

Creating a new issue	 87
Adding drop-down fields	 88
Adding the issue type drop-down	 89
Adding the status dropdown: do it yourself	 93

Fixing the owner and requester fields	 95
Enforcing a project context	 95

Defining filters	 96
Adding a filter 	 96
Specifying the filtered actions	 97
Adding filter logic	 98
Adding the project ID	 100
Altering the project details page	 101

Returning back to the owner and requester dropdowns	 102
Generating the data to populate the dropdowns	 105
Making one last change	 106

The rest of the CRUD	 107
Listing the issues	 108

Altering the project controller	 108
Altering the project view file	 109

Final tweaks	 112
Getting the status and type text to display 	 112

Adding the text display to the form	 113
Changing the issue detail view	 114
Displaying owner and requester names	 116

Using relational AR	 116
Making some final navigation tweaks	 118

Summary	 122
Chapter 6: User Management and Authentication	 125
Feature planning	 125
User CRUD	 126

Updating our common audit history columns	 128

Table of Contents

[iv]

Component behavior	 128
Adding a password confirmation field	 136
Hash the password	 139

Authenticating users using the database	 140
Introducing the Yii authentication model	 141

Changing the authenticate implementation	 146
Extending user attributes	 148

Displaying the last login time on the home page	 149
Summary	 151

Chapter 7: User Access Control	 153
Feature planning	 154
Access control filter	 155
Role based access control	 160

Configuring the authorization manager	 162
Creating the RBAC database tables	 162
Creating the RBAC authorization hierarchy	 166

Writing a console application command	 167
Assigning users to roles	 170
Adding RBAC roles to users on a per-project basis	 171

Adding RBAC business rules	 173
Implementing the new project AR methods	 174

Adding users to projects	 176
Altering the project model class	 177
Adding the new form model class	 178
Adding the new action method to the project controller	 179
Adding the new view file to display the form	 181
Putting it all together	 183

Checking authorization level	 184
Summary	 186

Chapter 8: Adding User Comments	 187
Feature planning	 187
Creating the model	 188
Creating the comment CRUD	 191
Altering the scaffolding to meet our requirements	 192

Adding a comment	 193
Displaying the form	 194

Creating a recent comments widget	 198
Introducing CWidget	 198

Named scopes	 199
More on relational AR queries in Yii	 200
Creating the widget	 203
Introducing CPortlet	 206

Summary	 209

Table of Contents

[v]

Chapter 9: Adding an RSS Web Feed	 211
Feature planning	 211
A little background–content syndication, RSS, and Zend Framework	 212
Installing Zend Framework	 212
Using Zend_Feed	 213
Creating user-friendly URLs	 217

Using the URL manager	 217
Configuring routing rules 	 218

Adding the feed links 	 222
Summary	 224

Chapter 10: Making It Look Good	 225
Feature planning	 225
Designing with layouts	 226

Specifying a layout	 226
Applying and using a layout	 227

Deconstructing the main.php layout file	 229
Introducing the Blueprint CSS framework	 229

Understanding the Blueprint installation	 230
Setting the page title	 231
Defining a page header	 231
Displaying menu navigation items	 233
Creating a breadcrumb navigation	 235
Specifying the content being decorated by the layout	 236
Defining the footer	 237

Nesting the layouts	 237
Creating themes	 240

Building themes in Yii	 240
Creating a theme	 240
Configuring the application to use a theme	 242

Translating the site to other languages	 244
Defining locale and language	 244
Performing language translation	 245

Performing message translation	 246
Performing file translation	 249

Summary	 250
Chapter 11: Using Yii Modules 	 251
Feature planning	 252
Working with modules	 252

Creating a module	 252
Using a module	 255
Module layout	 256

Table of Contents

[vi]

Applying a layout	 258
Restricting admin access	 260
Adding a system-wide message	 263

Creating the database table	 264
Creating our model and CRUD scaffolding	 265
Adding a link to our new functionality	 267
Displaying the message to users	 270

Importing the new model class for application-wide access	 271
Selecting the most recently updated message	 271
Adding a little design tweak	 272

Summary	 274
Chapter 12: Production Readiness	 275
Feature planning	 275
Logging	 275

Message logging	 276
Categories and levels	 277
Adding a login message log	 278

Message routing	 279
Handling errors	 282

Displaying errors	 284
Caching	 288

Cache configuration	 290
Using a file-based cache	 291
Cache dependencies	 295
Query caching	 296
Fragment caching	 297

Declaring fragment caching options	 298
Using fragment cache	 298

Page caching	 300
General performance tuning tips	 302

Using APC	 302
Disabling the debug mode	 302
Using yiilite.php	 303
Using caching techniques	 303
Enabling schema caching	 303

Summary	 304
Index	 305

Preface
This book is a step-by-step tutorial to developing a real-world application using
the Yii web application development framework. The book attempts to mirror the
environment of a software development team that is being tasked with building an
online application, touching on each aspect of the software development lifecycle,
as you build a project task management application from its conception to its
production deployment.

After a brief, general introduction to the Yii framework, and going through the iconic
"Hello World" example, the remaining chapters break down in the same way as
software development iterations do in real-world projects. We begin with creating a
working application with a valid, tested connection to a database.

We then move on to defining our main database entities and domain object model,
and become familiar with Yii's Object Relational Mapping (ORM) layer Active
Record. We learn how to lean on Yii's code generation tools to automatically build our
create/read/update/delete (CRUD) functionality against our newly created models.
We also focus on how Yii's form validation and submission model works. By the end
of Chapter 5, Managing Issues, you will have a working application that allows you to
manage the projects and issues (tasks) within those projects.

We then turn to the topic of user management. We learn about the built-in
authentication model within Yii to assist with the application login and logout
functionality. We take a deep dive into the authorization model, first taking
advantage of Yii's simple access control model and then implementing the more
sophisticated, role-based access control (RBAC) framework that Yii provides.

Preface

[2]

By the end of Chapter 7, User Access Control, all of the basics of a task-management
application are in place. The next several chapters begin to focus on additional
user features, user experience, and design. We add user comment functionality,
introducing a reusable, content portlet architecture approach in the process. We add
in an RSS web feed and demonstrate how easy it is to integrate other third-party
tools and frameworks within a Yii application. We take advantage of Yii's theming
structure to help streamline and design the application, and then introduce Yii's
internationalization (I18N) features so that the application can be adapted to various
languages and regions without engineering changes.

In the final chapter, we turn our focus to preparing the application for production
deployment. We introduce ways to optimize performance and improve security, to
prepare the application for a production environment.

What this book covers
Chapter 1, Meet Yii, provides you with a brief history of Yii, an introduction to the
Model View Controller (MVC) application architecture, and you are introduced
to the typical request life cycle as it makes its way from the end user through the
application, and finally as a response back to the end user.

Chapter 2, Getting Started, is dedicated to downloading and installing the framework,
creating a new Yii application shell, and introducing Gii, Yii's powerful and flexible
code generation tool.

Chapter 3, The TrackStar Application, is where the TrackStar application is introduced.
This is an online, project-management and issue-tracking application that you will
be building throughout the remaining chapters. Here you learn how to connect a
Yii application to an underlying database. You also learn how to run the interactive
shell from the command line. The last part of this chapter is focused on providing
an overview of unit and functional testing within a Yii application, and provides a
concrete example of writing a unit test in Yii.

Chapter 4, Project CRUD, helps you to start interacting with the database, to begin
adding features to the database-driven Yii application TrackStar. You learn how
to use Yii Migrations for database change management, and we use the Gii tool to
create model classes and also to build out create, read, update, and delete (CRUD)
functionality using the model class. The reader is also introduced to configuring and
performing form field validation in this chapter.

Preface

[3]

Chapter 5, Managing Issues, explains how additional related database tables are added
to the TrackStar application, and how the reader is introduced to the relational
Active Record in Yii. This chapter also covers using controller filters to tap into the
application life cycle in order to provide pre-action and post-action processing. The
official Yii extension library Zii is introduced, and we use Zii widgets to enhance the
TrackStar application.

Chapter 6, User Management and Authentication, explains how to authenticate users
in a Yii. While adding the ability to manage users in the TrackStar application, the
reader learns to take advantage of Behaviors in Yii, which provide an extremely
flexible approach to sharing common code and functionality across your Yii
components. This chapter also covers the Yii authentication model in detail.

Chapter 7, User Access Control, is dedicated to Yii's authorization model. First we
cover the simple access control features, which allow you to easily configure access
rules for the controller actions that are based on several parameters. Then we look at
how role-based access control (RBAC) is implemented in Yii, which allows a much
more robust authorization model for complete access control based on hierarchical
model of roles, operations, and tasks. Implementing role-based access control into
the TrackStar application also introduced the reader to using the console command
in Yii.

Chapter 8, Adding User Comments, helps demonstrate how to implement the feature
for allowing users to leave comments on projects and issues in the TrackStar
application; we introduce how to configure and use a statistical query relation, how
to create highly reusable user interface components called Widgets, and how to define
and use named scopes in Yii.

Chapter 9, Adding an RSS Web Feed, demonstrates how easy it is to use other
third-party frameworks and libraries in Yii applications, and shows you how to
use the URL management features of Yii to customize your applications' URL
format and structure.

Chapter 10, Making It Look Good, helps you learn more about the views in Yii, and
how to use layouts to manage markup and content shared across your application
pages. Theming is also introduced, as we show how easy it is to give a Yii application
a completely new look without having to alter any of the underlying engineering.
We then take a look at internationalization (i18n) and localization (l10n) in Yii as
language translation is added to our TrackStar application.

Chapter 11, Using Yii Modules, explains how to add administrative features to the
TrackStar site by using a Yii module. Modules provide a very flexible approach to
developing and managing the larger, self-contained sections of your application.

Preface

[4]

Chapter 12, Production Readiness, helps us prepare our TrackStar application for
production. You learn about Yii's logging framework, caching techniques, and
error-handling methods to help get your Yii applications production-ready.

What you need for this book
The following software are required for this book:

•	 Yii framework Version 1.1.12
•	 PHP 5.1 or above (5.3 or 5.4 recommended)
•	 MySQL 5.1 or above
•	 A web server capable of running PHP 5.1; the examples provided in the book

were built and tested with the Apache HTTP server, on which Yii has been
thoroughly tested within both Windows and Linux environments

•	 Zend Framework Version 1.1.12 or above (only needed for Chapter 9, Adding
an RSS Web Feed, and the downloading and configuration of this library,
which is covered in this chapter)

Who this book is for
If you are a PHP programmer with a knowledge of object-oriented programming
and want to rapidly develop modern, sophisticated web applications, then this book
is for you. No prior knowledge of Yii is required to read this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

Preface

[5]

A block of code is set as follows:

'components'=>array(
'db'=>array(
 'connectionString' => 'mysql:host=localhost;dbname=trackstar',
 'emulatePrepare' => true,
 'username' => '[YOUR-USERNAME]',
 'password' => '[YOUR-PASSWORD]',
 'charset' => 'utf8',
),
),

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

'components'=>array(
'db'=>array(
 'connectionString' => 'mysql:host=localhost;dbname=trackstar',
 'emulatePrepare' => true,
 'username' => '[YOUR-USERNAME]',
 'password' => '[YOUR-PASSWORD]',
 'charset' => 'utf8',
),
),

Any command-line input or output is written as follows:

$ yiic migrate create <name>

%cd /WebRoot/trackstar/protected/tests

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Meet Yii
Web development frameworks help jump-start your application by immediately
delivering the core foundation and plumbing needed to quickly turn your ideas
scribbled on the whiteboard into functional, production-ready code. With all of the
common features expected from web applications today, and available framework
options that meet these expectations, there is little reason to code your next web
application from scratch. A modern, flexible, and extensible framework is almost as
essential a tool to today's web developer as the programming language itself. And
when the two are particularly complementary, the results are an extremely powerful
toolkit—Java and Spring, Ruby and Rails, C# and .NET, and PHP and Yii.

Yii is the brainchild of founder Qiang Xue, who started the development of this
open source framework on January 1, 2008. Qiang had previously developed and
maintained the PRADO framework for many years prior to starting this. The years
of experience and user feedback cultivated from the PRADO project solidified the
need for a much easier, more extensible, and more efficient PHP5-based framework,
to meet the ever-growing needs of application developers. The initial alpha version
of Yii was officially released to meet these needs in October of 2008. Its extremely
impressive performance metrics when compared to other PHP-based frameworks
immediately drew very positive attention. On December 3, 2008, Yii 1.0 was officially
released, and as of Oct 1, 2012, the latest production-ready version is up to 1.1.12. It
has a growing development team and continues to gain in popularity among PHP
developers everyday.

The name Yii is an acronym for Yes, it is, and is pronounced as Yee or (ji:). Yii is a
high-performance, component-based, web application framework written in PHP5.
The name is also representative of the adjectives most used to describe it, such as
easy, efficient, and extensible. Let's take a quick look at each of these characteristics
of Yii, turn by turn.

Meet Yii

[10]

Easy
To run a Yii version 1.x-powered web application, all you need are the core
framework files and a web server supporting PHP 5.1.0 or higher. To develop with
Yii, you only need to know PHP and object-oriented programming. You are not
required to learn any new configuration or templating language. Building a Yii
application mainly involves writing and maintaining your own custom PHP classes,
some of which will extend from the core, Yii framework component classes.

Yii incorporates many of the great ideas and work from other well-known web
programming frameworks and applications. So if you are coming to Yii from using
other web development frameworks, it is likely that you will find it familiar and easy
to navigate.

Yii also embraces a convention over configuration philosophy, which contributes to its
ease of use. This means that Yii has sensible defaults for almost all the aspects that
are used for configuring your application. Following the prescribed conventions, you
can write less code and spend less time developing your application. However, Yii
does not force your hand. It allows you to customize all of its defaults and makes it
easy to override all of these conventions. We will be covering some of these defaults
and conventions later in this chapter and throughout the book.

Efficient
Yii is a high-performance, component-based framework that can be used for
developing web applications on any scale. It encourages maximum code reuse in
web programming and can significantly accelerate the development process. As
mentioned previously, if you stick with Yii's built-in conventions, you can get your
application up and running with little or no manual configuration.

Yii is also designed to help you with DRY development. DRY stands for Don't
Repeat Yourself, a key concept of agile application development. All Yii applications
are built using the Model-View-Controller (MVC) architecture. Yii enforces
this development pattern by providing a place to keep each piece of your MVC
code. This minimizes duplication and helps promote code reuse and ease of
maintainability. The less code you need to write, the less time it takes to get your
application to market. The easier it is to maintain your application, the longer it will
stay on the market.

Of course, the framework is not just efficient to use, it is remarkably fast and
performance optimized. Yii has been developed with performance optimization
in mind from the very beginning, and the result is one of the most efficient PHP
frameworks around. So any additional overhead that Yii adds to applications written
on top of it is extremely negligible.

Chapter 1

[11]

Extensible
Yii has been carefully designed to allow nearly every piece of its code to be extended
and customized to meet any project requirement. In fact, it is difficult not to take
advantage of Yii's ease of extensibility, since a primary activity when developing a
Yii application is extending the core framework classes. And if you want to turn your
extended code into useful tools for other developers, Yii provides easy-to-follow
steps and guidelines to help you create such third-party extensions. This allows
you to contribute to Yii's ever-growing list of features and actively participate in
extending Yii itself.

Remarkably, this ease-of-use, superior performance, and depth of extensibility does
not come at the cost of sacrificing its features. Yii is packed with features to help you
meet those high demands placed on today's web applications. AJAX-enabled widgets,
RESTful and SOAP Web services integration, enforcement of an MVC architecture,
DAO and relational ActiveRecord database layer, sophisticated caching, hierarchical
role-based access control, theming, internationalization (I18N), and localization
(L10N) are just the tip of the Yii iceberg. As of version 1.1, the core framework is now
packaged with an official extension library called Zii. These extensions are developed
and maintained by the core framework team members, and continue to extend Yii's
core feature set. And with a deep community of users who are also contributing by
writing Yii extensions, the overall feature set available to a Yii-powered application is
growing daily. A list of available, user-contributed extensions on the Yii framework
website can be found at http://www.yiiframework.com/extensions. There is
also an unofficial extension repository of great extensions that can be found at
http://yiiext.github.com/, which really demonstrates the strength of the
community and the extensibility of this framework.

MVC architecture
As mentioned earlier, Yii is an MVC framework and provides an explicit directory
structure for each piece of model, view, and controller code. Before we get started
with building our first Yii application, we need to define a few key terms and look at
how Yii implements and enforces this MVC architecture.

http://yiiext.github.com/
http://yiiext.github.com/

Meet Yii

[12]

Model
Typically in an MVC architecture, the model is responsible for maintaining the state,
and should encapsulate the business rules that apply to the data that defines this state.
A model in Yii is any instance of the framework class CModel or its child class. A model
class is typically comprised of data attributes that can have separate labels (something
user friendly for the purpose of display), and can be validated against a set of rules
defined in the model. The data that makes up the attributes in the model class could
come from a row of a database table or from the fields in a user input form.

Yii implements two kinds of models, namely the form model (a CFormModel class)
and active record (a CActiveRecord class). They both extend from the same base
class CModel. The class CFormModel represents a data model that collects HTML form
inputs. It encapsulates all the logic for form field validation, and any other business
logic that may need to be applied to the form field data. It can then store this data in
memory or, with the help of an active record model, store data in a database.

Active Record (AR) is a design pattern used to abstract database access in an object-
oriented fashion. Each AR object in Yii is an instance of CActiveRecord or its child
class, which wraps a single row in a database table or view, that encapsulates all the
logic and details around database access, and houses much of the business logic that
is required to be applied to that data. The data field values for each column in the
table row are represented as properties of the active record object. Active Record is
described in more detail a little later.

View
Typically the view is responsible for rendering the user interface, often based on the
data in the model. A view in Yii is a PHP script that contains user interface-related
elements, often built using HTML, but can also contain PHP statements. Usually, any
PHP statements within the view are very simple, conditional or looping statements,
or refer to other Yii UI-related elements such as HTML helper class methods or
prebuilt widgets. More sophisticated logic should be separated from the view and
placed appropriately in either the model, if dealing directly with the data, or the
controller, for more general business logic.

Chapter 1

[13]

Controller
The controller is our main director of a routed request, and is responsible for taking
user input, interacting with the model, and instructing the view to update and display
appropriately. A controller in Yii is an instance of CController or a child class thereof.
When a controller runs, it performs the requested action, which then interacts with the
necessary models, and renders an appropriate view. An action, in its simplest form, is
a controller class method whose name starts with the word action.

Stitching these together: Yii request
routing
In MVC implementations, a web request typically has the following life cycle:

•	 The browser sends a request to the server hosting the MVC application
•	 A controller action is invoked to handle the request
•	 The controller interacts with the model
•	 The controller invokes the view
•	 The view renders the data (often as HTML) and returns it to the browser

for display

Yii's MVC implementation is no exception. In a Yii application, incoming requests
from the browser are first received by a router. The router analyzes the request to
decide where in the application it should be sent for further processing. In most
cases, the router identifies a specific action method within a controller class to
which the request is passed. This action method will look at the incoming request
data, possibly interact with the model, and perform other needed business logic.
Eventually, this action method will prepare the response data and send it to the
view. The view will then format this data to conform to the desired layout and
design, and return it for the browser to display.

Meet Yii

[14]

Blog posting example
To help all of this make more sense, let's look at a fictitious example. Let's pretend
that we have used Yii to build ourselves a new blog site http://yourblog.com. This
site is like most typical blog sites out there. The home page displays a list of recently
posted blog posts. The names of each of these blog postings are hyperlinks that take
the user to the page that displays the full article. The following diagram illustrates
how Yii handles an incoming request sent from clicking on one of these hypothetical
blog post links:

The figure traces the request that is made from a user clicking on the link:

http://yourblog.com/post/show/id/99

First the request is sent to the router. The router parses the request, to decide where
to send it. The structure of the URL is key to the decision that the router will make.
By default, Yii recognizes URLs with the following format:

http://hostname/index.php?r=ControllerID/ActionID

The r querystring variable refers to the route that is analyzed by the Yii router. It will
parse this route to determine the appropriate controller and action method, to further
handle the request. Now you may have immediately noticed that our example URL
above does not follow this default format. It is a very simple matter of configuring
the application to recognize the URLs in the following format:

http://hostname/ControllerID/ActionID

http://ourblog.com/post/show/id/99
http://ourblog.com/post/show/id/99
http://ourblog.com/post/show/id/99
http://ourblog.com/post/show/id/99
http://ourblog.com/post/show/id/99
http://ourblog.com/post/show/id/99
http://ourblog.com/post/show/id/99
http://ourblog.com/post/show/id/99
http://ourblog.com/post/show/id/99
http://ourblog.com/post/show/id/99
http://ourblog.com/post/show/id/99
http://ourblog.com/post/show/id/99
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/index.php?r=ControllerID/ActionID
http://hostname/ControllerID/ActionID
http://hostname/ControllerID/ActionID
http://hostname/ControllerID/ActionID
http://hostname/ControllerID/ActionID
http://hostname/ControllerID/ActionID
http://hostname/ControllerID/ActionID
http://hostname/ControllerID/ActionID
http://hostname/ControllerID/ActionID

Chapter 1

[15]

We will continue to use this simplified format for the purposes of this example.
The ControllerID name in the URL refers to the name of the controller. By default
this is the first part of the controller class name, up to the word Controller. So for
example, if your controller class name is TestController, the ControllerID name
would be test. ActionID similarly refers to the name of the action that is defined by
the controller. If the action is a simple method defined within the controller, this
will be whatever follows the word action in the method name. For example, if your
action method is named actionCreate(), the ActionID name is create.

If the ActionID is omitted, the controller will take the default
action, which by convention is a method in the controller called
actionIndex(). If the ControllerID is also omitted, the
application will use the default controller. The Yii default
controller is called SiteController.

Turning back to the example, the router will analyze the URL, http://yourblog.
com/post/show/id/99, and take the first part of the URL path post to be the
ControllerID and the second part show to be the ActionID. This will translate to
routing the request to the actionShow() method within the PostController class.
The last part of the URL, the id/99 part, is a name/value querystring parameter that
will be available to the method during processing. In this example, the number 99
represents the unique internal ID for the selected blog post.

In our fictitious blog application, the actionShow() method handles requests for
specific blog post entries. It uses the querystring variable id to determine which
specific post is being requested. It asks the model to retrieve information about
blog post entry number 99. The model AR class interacts with the database to
retrieve the requested data. After retrieving the data from the model, our controller
further prepares it for display by making it available to the view. The view is then
responsible for handling the data layout and providing a response back to the
browser for user display.

This MVC architecture allows us to separate our data presentation from our data
manipulation, validation, and other application business logic. This makes it very
easy for developers to change aspects of the application without affecting the UI,
and for UI designers to freely make changes without affecting the model or business
logic. This separation also makes it very easy to provide multiple presentations of
the same model code. For example, you could use the same model code that drives
the HTML layout of http://yourblog.com to drive an RIA presentation, a mobile
application, web services, or a command-line interface. In the end, following these
set conventions and separating the functionality will result in an application that is
much easier to extend and maintain.

http://yourblog.com/post/show/id/99
http://yourblog.com/post/show/id/99
http://yourblog.com/post/show/id/99
http://yourblog.com/post/show/id/99
http://yourblog.com/post/show/id/99
http://yourblog.com/post/show/id/99
http://yourblog.com/post/show/id/99
http://yourblog.com/post/show/id/99
http://yourblog.com/post/show/id/99
http://yourblog.com/post/show/id/99
http://yourblog.com/post/show/id/99
http://yourblog.com/post/show/id/99

Meet Yii

[16]

Yii does a lot more to help you enforce this separation, than simply providing some
naming conventions and suggestions for where your code should be placed. It helps
to take care of all the lower-level, "glue" code needed to stitch all the pieces together.
This allows you to reap the benefits of a strict MVC designed application without
having to spend all the time in coding the details yourself. Let's take a look at some
of these lower-level details.

Object-relational mapping and Active
Record
For the most part, the web applications we build house their data in a relational
database. The blog posting application we used in the previous example holds blog
post content in database tables. However, web applications need the data that is held
in the persistent database storage to be mapped to in-memory class properties that
define the domain objects. Object-relational mapping (ORM) libraries provide this
mapping of database tables to domain object classes.

Much of the code that deals with ORM is about describing how fields in the database
correspond to properties in our in-memory objects, and is tedious and repetitive to
write. Luckily, Yii comes to the rescue and saves us from this repetition and tedium
by providing an ORM layer in the form of the Active Record (AR) pattern.

Active Record
As previously mentioned, AR is a design pattern used to abstract database access in an
object-oriented fashion. It maps tables to classes, rows to objects, and columns to class
properties. In other words, each instance of an Active Record class represents a single
row in a database table. However, an AR class is more than just a set of attributes that
are mapped to columns in a database table. It also houses the necessary business logic
to be applied to that data. The end result is a class that defines everything about how it
should be written to and read from the database.

Chapter 1

[17]

By relying on convention and sticking with reasonable defaults, Yii's implementation
of AR will save the developer a ton of time that might otherwise be spent in
configuration, or in writing the tedious and repetitive SQL statements required to
create, read, update, and delete data. It also allows the developer to access data
stored in the database in an object-oriented manner. To illustrate this, let's take our
fictitious blog example once again. The following is some example code that uses
AR to operate on a specific blog posting, whose internal ID, which is also used as the
table's primary key, is 99. It first retrieves the posting by using the primary key. It
then changes the title and updates the database to save the changes:

$post=Post::model()->findByPk(99);
$post->title='Some new title';
$post->save();

Active Record completely relieves us of the tedium of having to write any SQL code
or to otherwise deal with the underlying database.

In fact, active record in Yii does even more than this. It integrates seamlessly with
many other aspects of the Yii framework. There are many "active" HTML helper
input form fields that tie directly to their respective AR class attributes. In this way,
AR extracts the input form field values directly into the model. It also supports
sophisticated, automated data validation, and if the validation fails, the Yii view
classes easily display the validation errors to the end user. We will be revisiting AR
and providing concrete examples many times throughout this book.

The view and controller
The view and the controller are very close cousins. The controller makes available
the data for display to the view, and the view generates pages that trigger events that
send data to the controller.

In Yii, a view file belongs to the controller class that rendered it. In this way, we can
access the controller instance by simply referring to $this inside a view script. This
implementation makes the view and controller very intimate indeed.

When it comes to Yii controllers, there is a lot more to the story than just calling the
model and rendering views. Controllers can manage services to provide sophisticated
pre and postprocessing on requests, implement basic access control rules to limit access
to certain actions, manage application-wide layout and nested layout file rendering,
manage pagination of data, and many other behind-the-scenes services. Again, we
have Yii to thank for not having to get our hands dirty with these messy details.

There is a lot to Yii. The best way to explore all its beauty is to start using it. Now
that we have some of the very basic ideas and terminology under our belt, we are in
a great position to do just that.

Meet Yii

[18]

Summary
In this chapter, we were introduced at a very high-level to the Yii PHP Web
application framework. We also covered a number of software design concepts
embraced by Yii. Don't worry if the abstract nature of this initial discussion was a tad
lost on you. It will all make sense once we dive into specific examples. But to recap,
we specifically covered:

•	 The importance and utility of application development frameworks
•	 What Yii is and the characteristics of Yii that make it incredibly powerful

and useful
•	 MVC application architecture and the implementation of this architecture

in Yii
•	 A typical Yii web request life cycle and URL structure
•	 Object-relational mapping and Active Record in Yii

In the next chapter, we will go through the simple Yii installation process and start
building a working application to better illustrate all of these ideas.

Getting Started
The real pleasures and benefits of Yii are quickly revealed simply by using it. In
this chapter, we will see how the concepts introduced in the previous chapter
are manifested in an example Yii application. In the spirit of Yii's philosophy of
convention over configuration, we will follow a standard convention and begin by
writing a "Hello, World!" program in Yii.

In this chapter we will cover:

•	 Yii framework installation
•	 Creating a new application
•	 Creating controllers and views
•	 Adding dynamic content to view files
•	 Yii request routing and linking pages together

Our first step is to install the framework. Let's do that now.

Installing Yii
Prior to installing Yii, you must configure your application development
environment as a web server capable of supporting PHP 5.1.0 or above. Yii has been
thoroughly tested with the Apache HTTP server on Windows and Linux operating
systems. It may also run on other web servers and platforms that support PHP 5. We
assume that the reader has previously engaged in PHP development, and has access
to or otherwise has knowledge of how to set up such an environment. We will leave
the installation of a web server and PHP itself, as an exercise to the reader.

Getting Started

[20]

Some popular installation packages include:
•	 http://www.apachefriends.org/en/xampp.html
•	 http://www.mamp.info/en/index.html (mac only)

The basic Yii installation is almost trivial. There are really only two necessary steps:

1.	 Download the Yii framework from
http://www.yiiframework.com/download/.

2.	 Unpack the downloaded file to a web-accessible directory. There are several
versions of Yii to choose from when downloading the framework. We will
be using version 1.1.12 for the purpose of this book, which is the latest stable
version as of the time of writing. Though most of the example code should
work with any 1.1.x version of Yii, there may be some subtle differences
if you are using a different version. Please attempt to use 1.1.12 if you are
following along with the examples.

After you have downloaded the framework files and unpacked them in a web-
accessible directory, list the contents. You should see the following high-level
directories and files:

•	 CHANGELOG

•	 LICENSE

•	 README

•	 UPGRADE

•	 demos/

•	 framework/

•	 requirements/

Now that we have our framework unpacked in a web-accessible directory, it is
advised that you verify that your server satisfies all of the requirements of using
Yii, to ensure that the installation was a success. Luckily, doing so is very easy. Yii
comes with a simple requirements checking tool. To use the tool and have it verify
the requirements for your installation, simply point your browser to the index.php
entry script under the requirements/ directory that came with the downloaded
files. For example, assuming that the name of the directory containing all of the
framework files is simply called yii, the URL to access the requirements checker
might look like:

http://localhost/yii/requirements/index.php

http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
http://www.mamp.info/en/index.html
http://www.mamp.info/en/index.html
http://www.yiiframework.com/download/
http://www.yiiframework.com/download/

Chapter 2

[21]

The following screenshot shows the results that we see for our configuration:

Using the requirements checker is not, in itself, a requirement for installation. But
it is certainly recommended to ensure proper installation. As you can see, not all
of our results under the details section received a Passed status, as some display a
Warning result. Of course, your configuration will most likely be slightly different
from ours, and consequently your results may be slightly different as well. That is
okay. It is not necessary that all of the checks under the Details section pass, but it
is necessary to receive the following message under the Conclusion section: Your
server configuration satisfies the minimum requirements by Yii.

Getting Started

[22]

The Yii framework files do not need to be, and it is recommended they
not be, placed in a publicly accessible web directory. We did this here
simply to quickly take advantage of the requirements checker in our
browser. A Yii application has a one entry script, which is usually the
only file that needs to be placed in the webroot (by webroot, we mean
the directory containing the index.php entry script). Other PHP
scripts, including all of the Yii framework files, should be protected
from outside user access to avoid security issues. Simply reference the
directory containing the Yii framework files in the entry script and
place these files outside of the webroot.

Installing a database
Throughout this book, we will be using a database to support many of our examples
and the application that we will be writing. In order to properly follow along with
this book, it is recommended you install a database server. Though you can use any
database that is supported by PHP with Yii, if you want to use some of the built-in
database abstraction layers and tools within Yii, as we will be using, you will need to
use one that is supported by the framework. As of version 1.1 those are:

•	 MySQL 4.1 or later
•	 PostgresSQL 7.3 or later
•	 SQLite 2 and 3
•	 Microsoft SQL Server 2000 or later
•	 Oracle

While you may follow along with all of the examples in this book by
using any of the supported database servers, we will be using MySQL
(5.1 to be more specific) as our database server throughout all the
examples. It is recommended that you also use MySQL, version 5 or
greater, to ensure that the examples provided work without having to
make adjustments. We won't need a database for our simple "Hello,
World!" application seen in this chapter.

Now that we have installed the framework and have verified that we have met the
minimum requirements, let's move on to creating a brand new Yii web application.

Chapter 2

[23]

Creating a new application
To create a new application, we are going to use a little powerhouse of a tool that
comes packaged with the framework, called yiic. This is a command-line tool that
you can use to quickly bootstrap a brand new Yii application. It is not mandatory
to use this tool, but it saves time and guarantees that a proper directory and file
structure is in place for the application.

To use this tool, open up your command line, and navigate to a place in your
filesystem where you will want to create your application's directory structure. For
the purpose of this demo application, we will assume the following:

•	 YiiRoot is the name of the directory where you have installed the Yii
framework files

•	 WebRoot is configured as a document root of your web server

From your command line, change to your WebRoot directory and execute the
yiic command:

% cd WebRoot

% YiiRoot/framework/yiic webapp helloworld

Create a Web application under '/Webroot/helloworld'? [Yes|No]
Yes
 mkdir /WebRoot/helloworld
 mkdir /WebRoot/helloworld/assets
 mkdir /WebRoot/helloworld/css
 generate css/bg.gif
 generate css/form.css
 generate css/main.css

Your application has been created successfully under /Webroot/
helloworld.

The yiic command may not work for you as expected, especially if you
are attempting to use it in a Windows environment. The yiic file is an
executable that runs using your command-line version of PHP. It invokes
the yiic.php script. You may need to fully qualify by using php in front,
as in $ php yiic or $ php yiic.php. You may also need to specify
the PHP executable to be used, such as C:\PHP5\php.exe yiic.
php. There is also the yiic.bat file, which executes the yiic.php file,
that may be more suitable for Windows users. You may need to ensure
that your PHP executable location is accessible in your %PATH% variable.
Please try these variations to find a suitable solution for your computer
configuration. I will continue to simply refer to this command as yiic.

Getting Started

[24]

The yiic webapp command is used to create a brand new Yii web application. It
takes just a single argument to specify either the absolute or relative path to the
directory in which the application should be created. The result is the generation
of all the necessary directories and files that are used to provide a skeleton of the
default Yii web application.

Let's list the contents of our new application to see what was created for us:

assets/ images/ index.php themes/
css/ index-test.php protected/

The following is a description of these high-level items that were automatically created:

•	 index.php: Web application entry script file
•	 index-test.php: Entry script file for loading a test configuration
•	 assets/: Contains published resource files
•	 css/: Contains CSS files
•	 images/: Contains image files
•	 themes/: Contains application themes
•	 protected/: Contains protected (non-public) application files

With the execution of one simple command from the command line, we have created
all the directory structure and files needed to immediately take advantage of Yii's
sensible default configuration. All of these directories and files, along with the
subdirectories and files that they contain, can look a little daunting at first glance.
However, we can ignore most of them as we are getting started. What is important to
note is that all of these directories and files are actually a working web application.
The yiic command has populated the application with enough code to establish
a simple home page, a typical contact-us page to provide an example of a web
form, and a login page to demonstrate basic authorization and authentication in
Yii. If your web server supports the GD2 graphics library extension, you will also
see a CAPTCHA widget on the contact-us form, and the application will have the
corresponding validation for this form field.

Chapter 2

[25]

As long as your web server is running, you should be able to open up your
browser and navigate to http://localhost/helloworld/index.php. Here you
will be presented with a My Web Application home page along with the friendly
greeting Welcome To My Web Application, followed by some helpful next steps
information. The following screenshot shows this example home page:

You will need to ensure that both the assets/ and protected/
runtime/ directories are writable by your web server process,
otherwise you may see an error rather than the working application.

You'll notice that there is a working application navigation bar along the top of the
page. From left to right there is Home, About, Contact, and Login. Click around and
explore. Clicking on the About link provides a simple example of a static page. The
Contact link will take you to the contact us form that was mentioned before, along
with the CAPTCHA input field in the form. (Again, you will only see the CAPTCHA
field if you have the gd graphics extension as part of your PHP configuration.)

The Login link will take you to a page displaying a login form. This is working code
with form validations, as well as username and password credential validation and
authentication. Using either demo/demo or admin/admin as the username/password
combination will get you logged onto the site. Try it out! You can try a login that will
fail (any combination other than demo/demo or admin/admin) and see the error
validation messages get displayed. After successfully logging in, the Login link in
the header changes to a Logout link (username), where the username is either demo
or admin depending on the username that you used to log in. It is amazing that so
much has been accomplished without having to do any coding.

Getting Started

[26]

"Hello, World!"
All of this generated code will start to make more sense once we walk through a
simple example. To try out this new system, let's build that "Hello, World!" program
we promised at the start of this chapter. A "Hello, World!" program in Yii will be a
simple web page application that sends this very important message to our browser.

As discussed in Chapter 1, Meet Yii, Yii is a Model-View-Controller framework. A
typical Yii web application takes in an incoming request from a user, processes
information in that request in order to create a controller, and then calls an action
within that controller. The controller can then invoke a particular view to render and
return a response to the user. If dealing with data, the controller may also interact
with a model to handle all the CRUD (Create, Read, Update, Delete) operations on
that data. In our simple "Hello, World!" application, all we will require is the code
for a controller and a view. We are not dealing with any data, so a model will not be
needed. Let's begin our example by creating our controller.

Creating the controller
Previously, we used the yiic webapp command to help us generate a new Yii
web application. To create a new controller for our "Hello, World!" application,
we'll use another utility tool provided by Yii. This tool is called Gii. Gii is a highly
customizable and extensible, web-based, code-generating platform.

Configuring Gii
Before we can use Gii, we have to configure it within our application. We do this in
our main application configuration file located at protected/config/main.php. To
configure Gii, open up this file and uncomment the gii module. Our autogenerated
code already added the gii configuration, but it is commented out. So all we need
to do is uncomment and then also add our own password, as shown in the
following snippet:

return array(
 'basePath'=>dirname(__FILE__).DIRECTORY_SEPARATOR.'..',
 'name'=>'My Web Application',

 // preloading 'log' component
 'preload'=>array('log'),

 // autoloading model and component classes
 'import'=>array(
 'application.models.*',
 'application.components.*',

Chapter 2

[27]

),

 'modules'=>array(
 // uncomment the following to enable the Gii tool
 /*
 'gii'=>array(
 'class'=>'system.gii.GiiModule',
 'password'=>'Enter Your Password Here',
 // If removed, Gii defaults to localhost only.
Edit carefully to taste.
 'ipFilters'=>array('127.0.0.1','::1'),
),
 */
),

Once uncommented, Gii is configured as an application module. We will cover Yii
modules in detail, later in the book. The important thing at this point is to make sure
this is added to the configuration file and that you provide your password. With
this in place, navigate to the tool via http://localhost/helloworld/index.
php?r=gii.

Actually, you can specify the password value as false then the
module will not require a password. Since the ipFilters property is
specified to only allow access to the localhost machine, it is safe to
set the password to false for you local development environment.

Okay, after a successful entry of your password (unless you specified that a
password should not be used), you are presented with the menu page listing Gii's
main features:

http://localhost/helloworld/index.php?r=gii

Getting Started

[28]

Gii has several code generation options listed in the left-hand side menu. We want to
create a new controller, so click on the Controller Generator menu item.

Doing so will bring us to a form that allows us to fill out the relevant details to create
a new Yii controller class. In the following screenshot, we have already filled out the
Controller ID value to be message, and we have added an Action ID value that we
are calling hello. The following screenshot also reflects that we have clicked on the
Preview button. This is showing us all of the files that will be generated along with
our controller class:

We can see that in addition to our MessageController class, Gii is also going to
create a view file for each of the Action IDs that we specified. You may recall from
Chapter 1, Meet Yii, that if message is the Controller ID, our corresponding class file
is named MessageController. Similarly if we provide an Action ID value of hello,
we would expect there to be a method name in the controller called actionHello.

You can also click on the links provided in the Preview option to see the code that
will be generated for each file. Go ahead and check them out. Once you are happy
with what is going to be generated, go ahead and click on the Generate button. You
should receive a message telling you that the controller was successfully created,
with a link to try it now. If instead you received an error message, make sure that the
controllers/ and views/ directories are writable by your web server process.

Chapter 2

[29]

Clicking on the try it now link will actually take us to a 404 page not found error page.
The reason for this is that we did not specify the default actionID index when we
created our new controller. We decided to call ours hello instead. All we need to
do in order to make the request route to our actionHello() method is to add the
actionID to the URL. This is shown in the following screenshot:

Now we have it displaying the result of calling the MessageController:
:actionHello() method.

This is great. With a little help from Gii, we have generated a new controller PHP
file called MessageController.php, and it was placed properly under the default
controllers' directory protected/controllers/. The generated MessageController
class extends an application base class Controller located at protected/
components/Controller.php, and this class in turn extends the base framework
class CController. Since we specified the actionID hello, a simple action was also
created within MessageController called actionHello(). Gii also assumed that
this action, like most actions defined by a controller, will need to render a view. So it
added the code to this method to render a view file by the same name, hello.php,
and placed it in the default directory protected/views/message/ for view files
associated with this controller. Here is the uncommented part of the code that was
generated for the MessageController class:

<?php
class MessageController extends Controller
{
 public function actionHello()
 {
 $this->render('hello');
 }

Getting Started

[30]

As we can see, since we did not specify 'index' as one of the actionIDs when creating
this controller with Gii, there is no actionIndex() method. As was discussed
in Chapter 1, Meet Yii, by convention, a request that specifies a message as the
controllerID, but does not specify an action, will be routed to the actionIndex()
method for further processing. This is why we initially saw the 404 error, because
the request was not specifying an actionID.

Let's take a second and fix this. As we have mentioned, Yii favors convention over
configuration and has sensible defaults for almost everything. At the same time,
almost everything is also configurable, and the default action for a controller is no
exception. With a simple, single line at the top of our MessageController, we can
define our actionHello() method as the default action. Add the following line to
the top of the MessageController class:

<?php

class MessageController extends Controller
{
 public $defaultAction = 'hello';

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.PacktPub.com.
If you purchased this book elsewhere, you can visit http://www.
PacktPub.com/support and register to have the files e-mailed
directly to you.

Try it out by navigating to http://localhost/helloworld/index.php?r=message.
You should still see the hello action page being displayed and no longer see the
error page.

One final step
To turn this into a "Hello, World!" application, all we need to do is customize
our hello.php view to display "Hello, World!". Doing so is simple. Edit the file
protected/views/message/hello.php so that it contains just the following code:

<?php
<h1>Hello World!</h1>

Save it, and view it again in your browser: http://localhost/helloworld/index.
php?r=message.

http://localhost/helloworld/index.php?r=message

Chapter 2

[31]

It now displays our introductory greeting, as shown in the following screenshot:

We have our simple application working with stunningly minimal code. All we have
added is one line of HTML to our hello.php view file.

You may be wondering where/how all of the other HTML is being
generated. Our basic hello.php view file only contains a single line
with an <h1> tag. When we call render() in our controller, there is
also a layout view file being applied. No need to worry too much about
this now, as we will be covering layouts in greater detail later. But if
curious, you can take a look at the protected/views/layouts/
directory to see the layout files that have been defined and to help shine
a little light on where the rest of the HTML is defined.

Reviewing our request routing
Let's review how Yii analyzes our request within the context of this example application:

1.	 Navigate to the "Hello, World!" page by pointing your browser at the URL
http://localhost/helloworld/index.php?r=message (or you can use
the equivalent URL http://localhost/helloworld/index.
php?r=message/hello).

2.	 Yii analyzes the URL. The r (route) querystring variable indicates that
the controllerID is message. This tells Yii to route the request to the
message controller class, which it finds in protected/controllers/
MessageController.php.

3.	 Yii also discovers that the actionID specified is hello. (Or if no actionID is
specified, it routes to the controller's default action.) So the action method
actionHello() is invoked within the MessageController.

http://localhost/helloworld/index.php?r=message
http://localhost/helloworld/index.php?r=message
http://localhost/helloworld/index.php?r=message
http://localhost/helloworld/index.php?r=message

Getting Started

[32]

4.	 The actionHello() method renders the hello.php view file located
at protected/views/message/hello.php. And we altered this view
file to simply display our introductory greeting, which is then returned
to the browser.

This all came together with very little effort. By following Yii's default conventions,
the entire application request routing has been seamlessly stitched together for
us. Of course, Yii gives us every opportunity to override this default workflow if
needed, but the more you stick with the conventions, the less time you will spend in
tweaking configuration code.

Adding dynamic content
The simplest way to add dynamic content to our view template is to embed PHP
code into the template itself. View files are rendered by our simple application to
result in HTML, and any basic text in these files is passed through without being
changed. However, any content between <?php and ?> is interpreted and executed
as PHP code. This is a typical way that PHP code is embedded within HTML files
and is probably familiar to you.

Adding the date and time
To spice up our page with dynamic content, let's display the date and time:

1.	 Open up the hello view again and add the following line below the
greeting text:
<h3><?php echo date("D M j G:i:s T Y"); ?></h3>

2.	 Save and view: http://localhost/helloworld/index.php?r=message/
hello.

Presto! We have added dynamic content to our application. With each page refresh,
we can see the displayed content changing.

Admittedly this is not terribly exciting, but it does show you how to embed simple
PHP code into our view templates.

Chapter 2

[33]

A different approach for adding the date and
time
Although this approach of embedding PHP code directly into the view file does
allow for any PHP code of any amount or complexity, it is strongly recommended
that these statements do not alter data models and remain simple, display-oriented
statements. This will help keep our business logic separate from our presentation
code, which is part of the benefit of using the MVC architecture.

Moving the data creation to the controller
Let's move the logic that creates the time back to the controller and have the view do
nothing more than display the time. We'll move the determination of the time into
our actionHello() method within the controller and set the value in an instance
variable called $time.

First let's alter the controller action. Currently our action in our MessageController,
actionHello(), simply makes a call to render our hello view by executing the
following code:

$this->render('hello');

Before we render the view, let's add the call to determine the time and then store it
in a local variable called $theTime. Let's then alter our call to render() by adding a
second parameter, which includes this variable:

$theTime = date("D M j G:i:s T Y");
$this->render('hello',array('time'=>$theTime));

When calling render() with a second parameter containing array data, it will extract
the values of the array into PHP variables and make those variables available to the
view script. The keys in the array will be the names of the variables made available
to our view file. So in this example, our array key 'time', whose value is $theTime,
will be extracted into a variable named $time, which will be made available in the
view. This is one way to pass data from the controller to the view.

This assumes you are using the default view renderer with Yii.
As has been mentioned many times previously, Yii allows you to
customize nearly everything, and you can specify different view
rendering implementations if you so desire. Other view renders may
not behave in exactly the same way.

Getting Started

[34]

Now let's alter the view to use this $time variable rather than calling the date
function itself:

1.	 Open up the HelloWorld view file again, and replace the line that we
previously added to echo the time with the following:
<h3><?php echo $time; ?></h3>

2.	 Save and view the results again: http://localhost/helloworld/index.
php?r=message/hello

Once again we see the time displaying just as before, so the end result is no different
with the two approaches.

We have demonstrated the two approaches to adding PHP-generated content to the
view template files. The first approach puts the data creation logic directly into the
view file itself. The second approach houses this logic in the controller class, and
feeds the information to the view file by using variables. The end result is the same;
the time is displayed in our rendered HTML, but the second approach takes a small
step forward in keeping the data acquisition and manipulation, that is business-logic,
separate from our presentation code. This separation is exactly what a Model-View-
Controller architecture strives to provide, and Yii's explicit directory structure and
sensible defaults make this a snap to implement.

Have you been paying attention?
It was mentioned in Chapter 1, Meet Yii, that the view and controller are indeed very
close cousins. So much so that $this within a view file refers to the Controller class
that rendered the view.

In the previous example, we explicitly fed the time to the view file from the
controller by using the second argument in the render method. This second
argument explicitly sets the variables that are immediately available to the view file.
But there is another approach you can try out for yourself.

Alter the previous example by defining a public class property on
MessageController, rather than a locally scoped variable whose value is the
current date time. Then display the time in the view file by accessing this class
property via $this.

The downloadable codebase has the solution to this "do-it-yourself"
exercise included.

Chapter 2

[35]

Linking pages together
Typical web applications have more than one page within them for users to
experience, and our simple application should be no exception. Let's add another
page that displays a response from the World, "Goodbye, Yii developer!", and link to
this page from our "Hello, World!" page, and vice versa.

Normally, each rendered HTML page within a Yii web application will correspond
to a separate view (though this does not always have to be the case). So we will
create a new view and use a separate action method to render this view. When
adding a new page like this, we also need to consider whether or not to use a
separate controller. Since our Hello and Goodbye pages are related and very similar,
there is no compelling reason to delegate the application logic to a separate controller
class at the moment.

Linking to a new page
Let's have the URL for our new page be of the form http://localhost/
helloworld/index.php?r=message/goodbye.

Sticking with Yii conventions, this decision defines the name of our action method,
which we need in the controller, as well as the name of our view. So open up
MessageController and add an actionGoodbye() method just below our
actionHello() action:

class MessageController extends Controller
{
 ...

 public function actionGoodbye()
 {
 $this->render('goodbye');
 }

 ...
}

Getting Started

[36]

Next, we have to create our view file in the /protected/views/message/ directory.
This should be called goodbye.php as it should be the same as the actionID that
we chose.

Please keep in mind that this is just a recommended convention. The
view does not, by any means, have to have the same name as the action.
The view file name just has to match the first argument of render().

Create an empty file in that directory, and add the single line:

<h1>Goodbye, Yii developer!</h1>

Saving and viewing http://localhost/helloworld/index.php?r=message/
goodbye again will display the goodbye message.

Now we need to add the links to connect the two pages. To add a link on the Hello
screen to the Goodbye page, we could add an <a> tag directly to the hello.php view
file and hardcode the URL structure as follows:

Goodbye!

And this would work, but it tightly couples the view code implementation to a
specific URL structure, which might change at some point. If the URL structure were
to change, these links would become invalid.

Remember in Chapter 1, Meet Yii, when we went through the blog
posting application example? We used URLs that were of a different,
more SEO-friendly format than the Yii default format, namely:
http://yourhostname/controllerID/actionID

It is a simple matter of configuring a Yii Web application to use this
"path" format, as opposed to the querystring format we are using in this
example. Being able to easily change the URL format can be important to
web applications. As long as we avoid hardcoding them throughout our
application, changing them will remain a simple matter of altering the
application configuration file.

http://localhost/helloworld/index.php?r=message/goodbye
http://yourhostname/cControllerID/aActionID
http://yourhostname/cControllerID/aActionID

Chapter 2

[37]

Getting a little help from Yii CHtml
Luckily, Yii comes to the rescue here. Yii comes with myriad helper methods that
can be used in view templates. These methods exist in the static HTML helper
framework class CHtml. In this case, we want to employ the helper method "link"
that takes in a controllerID/actionID pair and creates the appropriate hyperlink for
you, based on how the URL structure is configured for the application. Since all these
helper methods are static, we can call them directly without the need to create an
explicit instance of the CHtml class. Using this link helper, we can add a link in our
hello.php view just below where we echoed the time, as follows:

<p><?php echo CHtml::link('Goodbye'array('message/goodbye')); ?></p>

Save and view the "Hello, World!" page: http://localhost/helloworld/index.
php?r=message/hello

You should see the hyperlink, and clicking on it should take you to the goodbye
page. The first parameter in the call to the link method is the text that will be
displayed in the hyperlink. The second parameter is an array that holds the value for
our controllerID/actionID pair.

We can follow the same approach to place a reciprocal link in our Goodbye view:

<h1>Goodbye, Yii developer!</h1>
<p><?php echo CHtml::link('Hello',array('message/hello')); ?></p>

Save and view the goodbye page:

http://localhost/helloworld/index.php?r=message/goodbye

You should now see an active link back to the "Hello, World!" page, from the
goodbye page.

So we now know a couple of ways to link web pages together in our simple
application. One approach added an HTML <a> tag directly to the view file and
hardcoded the URL structure. The other, preferred approach, made use of Yii's CHtml
helper class to help construct the URLs based on the controllerID/actionID pairs, so
that the resulting format will always conform to the application configuration. In this
way, we can easily alter the URL format throughout the application, without having
to go back and change every view file that happens to have internal links.

Our simple "Hello, World!" application really reaps the benefits of Yii's convention
over configuration philosophy. By applying certain default behavior and following
the recommended conventions, the building of this simple application and our entire
request routing process just fell together in a very easy and convenient way.

http://localhost/helloworld/index.php?r=message/goodbye
http://localhost/helloworld/index.php?r=message/goodbye

Getting Started

[38]

Summary
In this chapter, we constructed an extremely simple application in order to cover
many topics. First we installed the framework. We then used the yiic console
command to bootstrap the creation of a new Yii application. We then introduced an
incredibly powerful code generation tool called Gii. We used this to create a new
controller within our simple application.

Once our application was in place, we could see first hand how Yii handles the
request and routing to controllers and actions. We then moved on to creating and
displaying very simple dynamic content. And finally, we looked at how to link the
pages in a Yii application together.

While this incredibly simple application has provided concrete examples to
help us better understand the use of the Yii framework, it is far too simplistic to
demonstrate Yii's ability to ease the building of our real-world applications. In order
to demonstrate this, we need to build a real-world web application. We are going to
do just that. In the next chapter, we will introduce you to the project task and issue
tracking application that we will be building throughout the remainder of this book.

The TrackStar Application
We could continue to keep adding to our simple "Hello, World!" application to
provide examples of Yii's features, but that won't really help to understand the
framework in the context of a real-world application. In order to do that, we need to
build towards something that will more closely resemble the types of applications
web developers actually have to build. That is exactly what we are going to be doing
throughout the rest of this book.

In this chapter, we will introduce the project task-tracking application called
TrackStar. There are many other project management and issue-tracking
applications out there in the world, and the basic functionality of ours will not be
any different from many of these. So why build it, you ask? It turns out that this
type of user-based application has many features that are common to many web
applications. This will allow us to achieve two primary goals:

•	 Showcase Yii's incredible utility and feature set as we build useful
functionality and conquer real-world web application challenges

•	 Provide real-world examples and approaches that will immediately be
applicable to your next web application project

Introducing TrackStar
TrackStar is a software development life cycle (SDLC) issue-management
application. Its main goal is to help keep track of the many issues that arise
throughout the course of building software applications. It is a user-based
application that allows the creation of user accounts and grants access to the
application features once a user has been authenticated and authorized. It allows a
user to add and manage projects.

The TrackStar Application

[40]

Projects can have users associated with them (typically the team members working
on the project) as well as issues. The project issues will be things such as development
tasks and application bugs. The issues can be assigned to members of the project and
will have a status such as not yet started, started, and finished. In this way, the tracking
tool can give an accurate depiction of the projects with regard to what has been
accomplished, what is currently in progress, and what is yet to be started.

Creating user stories
Simple user stories are a great way to identify the necessary feature functionality of an
application. User stories, in their simplest form, state what a user can do with a piece
of software. They should start simple, and grow in complexity as you dive into more
and more of the details around each feature. Our goal here is to start with just enough
complexity to allow us to get started. If necessary, we'll add more detail later.

We briefly touched on the three main entities that play a large role in this
application, namely users, projects, and issues. These are our primary domain objects
and are extremely important items in this application. So let's start with them.

Users
TrackStar is a user-based web application. At a high level, the user can be in one of
two user states:

•	 Anonymous
•	 Authenticated

An anonymous user is any user of the application that has not been authenticated
through the login process. Anonymous users will only have access to register for a
new account or login. All other functionality will be restricted to authenticated users.

An authenticated user is any user that has provided valid authentication credentials
through the login process. In other words, authenticated users are users that have
logged in. Authenticated users will have access to the main feature functionality of
the application, such as creating and managing projects, and project issues.

Projects
Managing the project is the primary purpose of the TrackStar application. A project
represents a general, high-level goal to be achieved by one or more users of the
application. The project is typically broken down into more granular tasks, or issues,
that represent the smaller steps that need to be taken to achieve the overall goal.

Chapter 3

[41]

As an example, let's take what we are going to be doing throughout this book, that
is, building a project and issue-tracking management application. Unfortunately,
we can't use our yet-to-be-created application as a tool to help us track its own
development, but if we could, we might create a project named "Build The TrackStar
Project/Issue Management Tool". This project would be broken down into more
granular project issues, for example, "Create the login screen", "Design database
schema for issues", and so on.

Authenticated users can create new projects. The creator of the project within an
account will have a special role within that project called the project owner. Project
owners have the ability to edit and delete these projects as well as add new members
to the project. Other users associated with the project, besides the project owner, are
referred to simply as project members. Project members will have the ability to add
new issues as well as edit existing ones.

Issues
Project issues will be classified into one of three categories:

•	 Features: Items that represent real features to be added to the application.
For example, implementation of the login functionality.

•	 Tasks: Items that represent work that needs to be done, but are not an
actual feature of the software. For example, setting up the build and
integration server.

•	 Bugs: Items that represent application behaviors that are not working as
expected. For example, the account registration form does not validate the
format of an input e-mail address.

And issues can be in one of the following three status states:

•	 Not yet started
•	 Started
•	 Finished

Project members can add new issues to a project as well as edit and delete them.
They can assign issues to themselves or other project members.

For now, this is enough information on these three main entities to allow us to
move forward. We could go into a lot more detail about "what exactly does account
registration entail?" or "how exactly does one add a new task to a project?", but we
have outlined enough specifications to begin on these basic features. We'll nail down
the more granular details as we proceed with the implementation.

The TrackStar Application

[42]

However before we start, we should jot down some basic navigation and application
workflow. This will help everyone to better understand the general layout and flow
of the application we are building.

Navigation and page flow
It is always good to outline the main pages within an application and see how they
fit together. This will help us quickly identify some needed Yii controllers, actions,
and views, as well as help to set everyone's expectations on what we'll be building
towards at the onset of our development.

The following diagram shows the basic application flow, from logging in through to
the project details listing:

When a user first comes to the application, they must log in and authenticate
themselves prior to proceeding to any functionality. Once successfully logged in,
they will be presented with a list of their current projects along with the ability to
create a new project. Choosing a specific project will take them to the project details
page. The project details page will present a list of the issues by type. There will also
be the ability to add a new issue as well as edit any of the listed issues.

Chapter 3

[43]

This is all pretty basic functionality, but the figure gives us a little more information
on how the application is stitched together and allows us to start identifying our
needed models, views, and controllers better. It also allows something visual to be
shared with others so that everyone involved has the same picture of what we are
working towards. In my experience, almost everyone prefers pictures over written
specifications when first thinking through a new application.

Data relationships
We still need to think a little more about the data we will be working with as we
begin to build toward these specifications. If we pick out all the main nouns from our
system, we may end up with a pretty good list of domain objects and, by extension of
using active record, the data we want to model. Our previously outlined user stories
identify the following:

•	 A User
•	 A Project
•	 An Issue

Based on this and the other details provided in the user stories and application
workflow diagram, a first attempt at the necessary data model is shown in the
following diagram:

The TrackStar Application

[44]

This is a very basic object model that outlines our primary data entities, their
respective attributes, and some of the relationships between them. The 1..* and 0..*
on either side of the line between the project and user objects represents that there is
a many-to-many relationship between them. A user can be associated with zero or
more projects, and a project has one or more users. Similarly, we have represented
the fact that a project can have 0 or more issues associated with it, whereas an issue
belongs to just one specific project. Also, a user can be the owner of (or requestor of)
many issues, but an issue just has one owner (also just one requestor).

We have kept the attributes as simple as possible at this stage. A user is going to
need a username and a password in order to get past the login screen. The project
has only a name attribute.

An issue has the most associated information based on what we currently know
about them. As discussed briefly in the previously defined user stories, issues will
have a type attribute to distinguish the general category (bug, feature, or task). They
will also have a status attribute to indicate the progress of the issue being worked
on. There will be a logged in user who initially creates the issue; this is the requestor.
And once a user in the system has been assigned to work on the issue, they will be
the owner of the issue. We have also defined the description attribute to allow for
some descriptive text of the issue to be entered.

Note that we have not been explicitly talking about schemas or databases yet. The
fact is that until we think through what is really needed from a data perspective, we
won't know the right tool to use to house this data. Would flat files on the filesystem
work just as well as a relational database? Do we need to persist data at all?

The answers to these questions are not always necessary at this early planning stage.
It is better to focus more on the features we want and the type of data needed to
support these features. We can turn to the explicit technology implementation details
after we have had a chance to discuss these ideas with other project stakeholders,
to ensure we are on the right track. Other project stakeholders include anyone and
everyone involved in this development project. This can include the client, if you
are building an application for someone else, as well as other development team
members, product/project managers, and so on. It is always a good idea to get
some feedback from "the team" to help validate the approach and any assumptions
being made.

In our case, there is really no one else involved in this development effort. So, we
can quickly draw some conclusions to answer our data-related questions and move
forward with our application development.

Chapter 3

[45]

Since this is a web-based application, and given the nature of the information we
need to store, retrieve, and manipulate, we can conclude that it would be best
to persist the data in this application. Also, based on the relationships that exist
between the types of data we want to capture and manage, a good approach to
storing this data would be in a relational database. Based on its ease of use, excellent
price point, its general popularity among PHP application developers, and its
compatibility with the Yii framework, we will be using MySQL as the specific
database server.

Now that we know enough about what we are going to start building and how we
are going to start building it, let's get started.

Creating the new application
First things first, let's get the initial Yii web application created. We have already
seen how easy this is to accomplish in Chapter 2, Getting Started. As we did there, we
will assume the following:

•	 YiiRoot is the directory where you have installed Yii
•	 WebRoot is configured as the document root of your web server (that is, to

where http://localhost/ resolves)

So from the command line, change to your WebRoot directory and execute
the following:

% YiiRoot/framework/yiic webapp trackstar

Create a Web application under '/Webroot/trackstar'? [Yes|No] Yes

This provides us with our skeleton directory structure and our out-of-the-box working
application. You should be able to view the home page of this new application by
navigating to http://localhost/trackstar/index.php?r=site/index.

Because our default controller is SiteController and the default
action within that controller is actionIndex(), we could also
navigate to the same page without specifying the route.

http://hostname/
http://localhost/trackstar/index.php?r=site/index
http://localhost/trackstar/index.php?r=site/index

The TrackStar Application

[46]

Connecting to the database
Now that we have our skeleton application up and running, let's work on
getting it properly connected to a database. In fact, the skeleton application was
autoconfigured to use a database. A by-product of using the yiic tool is that our
new application is configured to use a SQLite database. If you take a peek in the
main application configuration file, located at protected/config/main.php, you
will see the following declaration about halfway down:

'db'=>array('connectionString' => 'sqlite:'.dirname(__FILE__).'/../
data/testdrive.db',
),

And you can also verify the existence of protected/data/testdrive.db, which is
the SQLite database it is configured to use.

Since we have already made the decision to use MySQL, we'll need to make some
configuration changes. However, before we change the configuration to use a
MySQL database server, let's briefly talk about Yii and databases more generally.

Yii and databases
Yii provides great support for database programming. Yii's Data Access
Objects (DAO) are built on top of the PHP Data Objects (PDO) extension
(http://php.net/pdo). This is a database abstraction layer that enables the
application to interact with the database through a database-independent interface.
All the supported database management systems (DBMS) are encapsulated behind
a single uniform interface. In this way, the code can remain database independent
and the applications developed using Yii DAO can easily be switched to use a
different DBMS without the need for modification.

To establish a connection with a supported DBMS, you can simply create a new
CDbConnection instance:

$connection=new CDbConnection($dsn,$username,$password);

Here the format of the $dsn variable depends on the specific PDO database driver
being used. Some common formats include:

•	 SQLite: sqlite:/path/to/dbfile
•	 MySQL: mysql:host=localhost;dbname=testdb
•	 PostgreSQL: pgsql:host=localhost;port=5432;dbname=testdb
•	 SQL Server: mssql:host=localhost;dbname=testdb
•	 Oracle: oci:dbname=//localhost:1521/testdb

http://php.net/pdo

Chapter 3

[47]

CDbConnection also extends from CApplicationComponent, which allows it to
be configured as an application component. This means that we can add it to the
components property of the application, and customize the class and property values
in the main configuration file. This is our preferred approach, which we will detail next.

Adding a db connection as an application component
Let's take a quick step back. When we created the initial application, we specified
the application type to be a web application. Remember we specified webapp on the
command line. Doing so specified that the application singleton class that is created
upon each request be of the type CWebApplication. This Yii application singleton
is the execution context within which all request processing is run. Its main task
is to resolve the user request and route it to an appropriate controller for further
processing. This was represented as the Yii Application Router back in the diagrams
used in Chapter 1, Meet Yii, when we covered the request routing. It also serves as the
central place for keeping application-level configuration values.

To customize our application configuration, we normally provide a configuration file
to initialize its property values when the application instance is being created. The
main application configuration file is located in /protected/config/main.php. This
is a PHP file containing an array of key-value pairs. Each key represents the name of
a property of the application instance, and each value is the corresponding property's
initial value. If you open up this file, you will see that several settings have already
been configured for us.

Adding an application component to the configuration is easy. Open up the file
(/protected/config/main.php) and locate the components property.

We can see that there are entries already specifying a log and user application
component. These will be covered in the subsequent chapters. We can also see (and
as we noted previously) that there is a db component there as well, configured to use
a SQLite connection to a SQLite database located at protected/data/testdrive.
db. There is also a commented out section that defines this db component to use a
MySQL database. All we need to do is remove the SQLite db component definition,
uncomment the section that defines the MySQL component, and then make the
appropriate changes to match your database name, username, and password so the
connection can be made. The following code shows this change:

// application components
 'components'=>array(
 …
 //comment out or remove the reference to the sqlite db
/*
'db'=>array(

The TrackStar Application

[48]

 'connectionString' => 'sqlite:'.dirname(__FILE__).'/../data/
testdrive.db',
),
*/
 // uncomment the following to use a MySQL database
 'db'=>array(
 'connectionString' => 'mysql:host=localhost;dbname=trackstar',
 'emulatePrepare' => true,
 'username' => '[your-db-username]',
 'password' => '[your-db-password]',
 'charset' => 'utf8',
),

This assumes that a MySQL database has been created called trackstar and is
available to connect using the localhost. Depending on your environment, you
may need to specify the localhost IP of 127.0.0.1 rather than localhost. One of
the great benefits of making this an application component is that now, anywhere
throughout our application, we can reference the database connection simply as a
property of the main Yii application Yii::app()->db. Similarly, we can use this as a
reference for any of the other components defined in the config file.

The charset property when set to 'utf8' sets the character set used
for the database connection. This property is only used for MySQL and
PostgreSQL databases. It will default to null, which means that it will
use the default charset. We are setting it here to ensure proper utf8
unicode character support for our PHP application.
The emulatePrepare => true configuration sets a PDO
attribute (PDO::ATTR_EMULATE_PREPARES) to true, which is
recommended if you are using PHP 5.1.3 or higher. This was added to
PHP 5.1.3, and when used, causes the PDO native query parser to be
used rather than the native prepared statements APIs in the MySQL
client. The native prepared statements in the MySQL client cannot take
advantage of the query cache, and as such have been known to result
in poor performance. The PDO native query parser can use the query
cache, and so it is recommended to use this option if available (PHP
5.1.3 or higher).

So, we have specified a MySQL database called trackstar as well as the username
and password needed to connect to this database. We did not show you how
to create such a database in MySQL. We assume you understand how to set
up a MySQL database and how to use it. Please refer to your specific database
documentation if you are unsure of how to create a new database, called trackstar,
and configure a username and password for connectivity.

Chapter 3

[49]

Testing the database connection
Before we move on, we should ensure that our database connection is actually
working. There are a few ways we could do this. We'll look at two approaches. In the
first approach, we'll use the yiic command-line tool to start an interactive shell for
our application and ensure that there are no errors when we attempt to reference the
application db component. Then we'll provide a second approach that will introduce
us to unit testing in Yii with PHPUnit.

Using the interactive shell
We'll start off with a simple test using the Yii interactive shell. As you recall, we
used the webapp command along with the yiic command-line utility to create our
new application. Another command to use with this utility is shell. This allows you
to run PHP commands within the context of the Yii application, directly from the
command line.

To start the shell, navigate to the root directory of the application, that is the
directory that contains the index.php entry script Webroot/trackstar/. Then run
the yiic utility, passing in shell as the command (refer to the following screenshot).

This starts the shell and allows you to enter the commands directly after
the >> prompt.

What we want to do to test our connection is ensure that our database connection
application component is accessible. We can simply echo out the connection string
and verify that it returns what we set it to in our configuration. So from the shell
prompt type the following:

>> echo Yii::app()->db->connectionString;

It should echo something similar to the following:

mysql:host=localhost;dbname=trackstar

This demonstrates that the db application component is configured correctly and
available for use in our application.

The TrackStar Application

[50]

Automated testing – unit and functional tests
Gathering feedback is of fundamental importance to application development;
feedback from the users of the application and other project stakeholders, feedback
from the development team members, and feedback directly from the software itself.
Developing software in a manner that will allow it to tell you when something is
broken can turn the fear associated with integrating and deploying applications into
boredom. The method by which you can empower your software with this feedback
mechanism is writing automated unit and functional tests, and then executing them
repeatedly and often.

Unit and functional testing
Unit tests are written to provide the developer with verification that the code is
doing the right things. Functional tests are written to provide the developer, as well
as other project stakeholders, with verification that the application as a whole is
doing things the right way.

Unit tests
Unit tests are the tests that focus on the smallest units within a software application.
In an object-oriented application, such as a Yii web application, the smallest units are
the public methods that make up the interfaces to the classes. Unit tests should focus
on one single class and not require other classes or objects to run it. Their purpose is
to validate that a single unit of code is working as expected.

Functional tests
Functional tests focus on testing the end-to-end feature functionality of the
application. These tests exist at a higher level than the unit tests and typically require
multiple classes or objects to run. Their purpose is to validate that a given feature of
the application is working as expected.

Benefits of testing
There are many benefits to writing unit and functional tests. For one, they are a great
way to provide documentation. Unit tests can quickly tell the exact story of why
a block of code exists. Similarly, the functional tests document what features are
implemented within an application. If you stay diligent in writing these tests, then
the documentation continues to evolve naturally as the application evolves.

Chapter 3

[51]

They are also invaluable as a feedback mechanism to constantly reassure the
developer and other project stakeholders that the code and application is working
as expected. You run your tests every time you make changes to the code and get
immediate feedback on whether or not something that you altered inadvertently
changed the expected behavior of the system. You can then address these issues
immediately. This really increases the confidence that developers have with the
application and translates to less bugs and more successful projects.

This immediate feedback also helps to facilitate change and improve the design of
the code. A developer is more likely to make improvements to existing code, if a
suite of tests are in place to immediately provide feedback as to whether the changes
made altered the application behavior. The confidence provided by a suite of unit
and functional tests allows developers to write better software, release more stable
applications, and ship quality products.

Testing in Yii
As of version 1.1, Yii is tightly integrated with the PHPUnit (http://www.phpunit.
de/) and Selenium Remote Control (http://seleniumhq.org/projects/remote-
control/) testing frameworks. You may certainly test Yii PHP code with any of
the testing frameworks available. However, the tight integration of Yii with the two
previously mentioned frameworks makes things even easier. And making things
easy is one of our primary goals here.

When we used the yiic webapp console command to create our new web
application, we noticed that many files and directories were automatically created
for us. The ones among these that are relevant to writing and executing automated
tests are the following:

File/directory Contains/stores
trackstar/ Contains all the files listed in the file/directory column
 protected/ Protected application files
 tests/ Tests for the application
 fixtures/ Database fixtures
 functional/ Functional tests
 unit/ Unit tests
 report/ Coverage reports
 bootstrap.php The script executed at the very beginning of the tests
 phpunit.xml The PHPUnit configuration file
 WebTestCase.php The base class for web-based functional tests

The TrackStar Application

[52]

You can place your test files into three main directories, namely fixtures,
functional, and unit. The report directory is used to store the generated code
coverage reports.

The PHP extension, XDebug, must be installed in order
to generate reports. For details on this installation, see
http://xdebug.org/docs/install. This extension
is not required for the following example.

Unit tests
A unit test in Yii is written as a PHP class that extends from the framework class
CTestCase. The conventions prescribe it to be named AbcTest, where Abc is
replaced by the name of the class being tested. For example, if we were to test the
MessageController class in our "Hello, World!" application from Chapter 2, Getting
Started, we would name the test class MessageControllerTest. This class is saved in a
file called MessageControllerTest.php under the directory protected/tests/unit/.

The test class primarily has a set of test methods named testXyz, where Xyz is often
the same as the method name for which you are writing the test.

Continuing with the MessageController example, if we were testing our
actionHelloworld() method, we would name the corresponding test method
testActionHelloworld() in our MessageControllerTest class.

Installing PHPUnit
As of version 1.1, Yii is tightly integrated with the PHPUnit (http://www.phpunit.de/)
testing framework.

In order to follow through with this example, you will need to install PHPUnit.
This should be done using the Pear Installer. (For more information on Pear, see
http://pear.php.net/.) Please visit the following URL for more information on
how to install PHPUnit based on your environment configuration:

https://github.com/sebastianbergmann/phpunit/

It is certainly beyond the scope of this book to specifically cover
PHPUnit's testing features. It is recommended that you take
some time to go through the documentation to get a feel for the
jargon and for writing basic unit tests: https://github.com/
sebastianbergmann/phpunit/

http://xdebug.org/docs/install
http://pear.php.net/
http://pear.php.net/

Chapter 3

[53]

Testing the connection
Assuming you have successfully installed PHPUnit, we can add a test for our
database connection under protected/tests/unit/. Let's create a simple database
connectivity test file under this directory called DbTest.php. Add this new file with
the following contents:

<?php
class DbTest extends CTestCase
{
 public function testConnection()
 {
 $this->assertTrue(true);
 }
}

Here we have added a fairly trivial test. The assertTrue() method, which is a part of
PHPUnit, is an assertion that will pass if the argument passed to it is true, and it will
fail if it is false. In this case, it is testing if true is true. So this test will certainly pass.
We are doing this to make sure that our new application is working as expected, for
testing with PHPUnit. Navigate to the tests folder and execute this new test:

%cd /WebRoot/trackstar/protected/tests

%phpunit unit/DbTest.php

…
Time: 0 seconds, Memory: 10.00Mb

OK (1 test, 1 assertion)

If for some reason this test failed on your system, you may need to
change protected/tests/bootstrap.php so that the variable
$yiit properly points to your /YiiRoot/yiit.php file.

Confident that our testing framework is working as expected within our newly
created TrackStar application, we can use this to write a test for the db connection.

Change the assertEquals(true) statement in the testConnection() test
method to:

$this->assertNotNull(Yii::app()->db->connectionString);

The TrackStar Application

[54]

And rerun the test:

%phpunit unit/DbTest.php

…
Time: 0 seconds, Memory: 10.00Mb

OK (1 test, 1 assertion)

As you recall, since we configured our database connection as an application
component named db, Yii::app()->db should return an instance of the
CDbConnection class. If the application failed to establish a database connection,
this test would return an error. Since the test still passes, we can move forward with
the confidence that the database connection is set up properly.

Summary
This chapter introduced the task-tracking application, TrackStar, which we will be
developing throughout the rest of this book. We talked about what the application
is and what it does, and provided some high-level requirements for the application
in the form of informal user stories. We then identified some of the main domain
objects we will need to create, as well as worked through some of the data we will
need to be able to house and manage.

We then took our first step towards building our TrackStar application. We created
a new application with all of the working functionality that comes "for free" from the
autogenerated code. We also configured our application to be connected to a MySQL
database and demonstrated two approaches to test that connection. One approach
demonstrated Yii's integration with PHPUnit and how to write automated tests for
your Yii application.

In the next chapter, we will get to finally sink our teeth into more sophisticated
features. We will begin to do some actual coding as we implement the needed
functionality to manage our project entities within the application.

Project CRUD
Now that we have a basic application in place and configured to communicate
with our database, we can begin to work on some real features of our application.
We know that the "project" is one of the most fundamental components in our
application. A user cannot do anything useful with the TrackStar application without
first either creating or choosing an existing project within which to add tasks and
other issues. For this reason, we want to first turn our focus to getting some project
functionality into the application.

Feature planning
At the end of our efforts in this chapter, our application should allow users to create
new projects, select from a list of existing projects, update/edit existing projects, and
delete existing projects.

In order to achieve this goal, we should identify the more granular tasks on
which to focus. The list below identifies a list of tasks we aim to accomplish
within this chapter:

•	 Design the database schema to support projects
•	 Build the necessary tables and all other database objects identified in the schema
•	 Create the Yii AR model classes needed to allow the application to easily

interact with the created database table(s)
•	 Create the Yii controller class(es) that will house the functionality to do

the following:
°° Create new projects
°° Retrieve a list of existing projects for display
°° Update the data associated with existing projects
°° Delete existing projects

Project CRUD

[56]

•	 Create the Yii view files and presentation tier logic that will:

°° Display the form to allow for new project creation
°° Display a listing of all the existing projects
°° Display the form to allow for a user to edit an existing project
°° Add a delete button to the project listing to allow for project deletion

This is certainly enough to get us started.

Creating the project table
Back in Chapter 3, The TrackStar Application, we talked about the basic data that
represents a project, and we decided that we would use a MySQL relational database
to build the persistence layer of this application. Now we need to design and build
the table that will persist our project data.

We know projects need to have a name and a description. We are also going to keep
some basic table auditing information on each table by tracking the time a record
was created and updated, as well as who created and updated the record.

Based on these properties, the following is how the project table will look:

CREATE TABLE tbl_`project` (
`id` INTEGER NOT NULL auto_increment,
`name` varchar(255) NOT NULL,
`description` text NOT NULL,
`create_time` DATETIME default NULL,
`create_user_id` INTEGER default NULL,
`update_time` DATETIME default NULL,
`update_user_id` INTEGER default NULL,
PRIMARY KEY (`id`)
) ENGINE = InnoDB
;

Now, before we jump right in and just use our favorite MySQL database editor to
create this table, we need to talk about how we can use Yii to manage the changes that
will take place in our database schema as we build our TrackStar application.

Chapter 4

[57]

Yii database migrations
We know it is a good practice to track version changes of our application source
code. As you are following along in building our TrackStar application, it would
be wise to use version control software such as SVN or GIT to help manage all the
changes we make to our codebase along the way. If our codebase changes get out of
sync with our database changes, it is likely that our entire application will break. So,
it would also be really great to manage the structural changes we will be making to
our database along the way.

Yii helps us out in this regard. Yii provides a database migration tool that keeps track
of database migration history and allows us to apply new migrations as well as revert
existing migrations to allow us to restore the database structure to a previous state.

The Yii migration utility is a console command that we use with the yiic
command-line tool. As a console command, it uses a configuration file specific to
console commands, which, by default, is protected/config/console.php. We need
to properly configure our database component in this file. Just as we did in our main.
php config file, we need to define our db component to use our MySQL database. If
you open up the protected/config/console.php configuration file, you'll see that
it already has a MySQL configuration defined, but it is commented out. Let's remove
the SQLite configuration and uncomment the MySQL configuration, changing the
username and password as appropriate for your database settings:

'components'=>array(
'db'=>array(
 'connectionString' => 'mysql:host=localhost;dbname=trackstar',
 'emulatePrepare' => true,
 'username' => '[YOUR-USERNAME]',
 'password' => '[YOUR-PASSWORD]',
 'charset' => 'utf8',
),
),

Now that we have our configuration change in place, we can proceed to create the
migration. To do so, we use the yiic command-line utility tool with the migrate
command. Creating a migration takes the general form of:

$ yiic migrate create <name>

Project CRUD

[58]

Here, the required name parameter allows us to specify a brief description of the
database change we are making. The name parameter is used as part of the migration
filename and PHP class name. Therefore, it should only contain letters, digits, or
underscore characters. Yii takes the input name parameter, and appends a UTC
timestamp (in the format of yymmdd_hhmmss), with the letter m for migration, to use as
both the filename and the PHP class name. Let's go ahead and create a new migration
for our project table, and this naming convention will be made clearer. From the
command line, navigate to the application protected/ directory and then issue the
command to create a new migration using the name create_project_table:

This creates the file /Webroot/trackstar/protected/migrations/
m121108_195611_create_project_table.php with the following content:

class m121108_195611_create_project_table extends CDbMigration
{
 public function up()
 {
 }

 public function down()
 {
 echo "m121108_195611_create_project_table does not support
 migration down.\n";
 return false;
 }

 /*
 // Use safeUp/safeDown to do migration with transaction
 public function safeUp()
 {
 }

 public function safeDown()
 {
 }
 */
}

Chapter 4

[59]

Of course, we'll have to make some changes to this file in order to have it create our
new table. We implement the up() method to apply our desired database changes
and we implement the down() method to revert these changes, which will allow us to
revert to a previous version of our database structure. The safeUp() and safeDown()
methods are similar, but they will execute the changes within a database transaction
in order to treat the entire migration as an atomic unit to be executed in an all-or-
nothing manner. In this case, the change we want to apply is to create a new table,
and we can revert this change by dropping the table. These changes are as follows:

public function up()
{
 $this->createTable('tbl_project', array(
 'id' => 'pk',
 'name' => 'string NOT NULL',
 'description' => 'text NOT NULL',
 'create_time' => 'datetime DEFAULT NULL',
 'create_user_id' => 'int(11) DEFAULT NULL',
 'update_time' => 'datetime DEFAULT NULL',
 'update_user_id' => 'int(11) DEFAULT NULL',
), 'ENGINE=InnoDB');
}

public function down()
{
 $this->dropTable('tbl_project');
}

After saving our changes, we can execute the migration. From still within the
protected/ directory, execute the migration as such:

Project CRUD

[60]

Using the migrate command with no arguments will result in migrating up (that
is executing the up() method) for every migration that has not yet been applied.
And, since this is the first time we have run a migration, Yii is going to create a new
migration history table, tbl_migration, for us automatically. Yii uses this table to
keep track of what migrations have already been applied. If we specify down as a
command-line argument to the migrate command, the last applied migration will be
reverted by running the down() method of that migration.

Now that we have applied our migration, our new tbl_project table has now been
created and is ready for us to use.

We'll be using Yii migrations throughout the book as we develop our
TrackStar application, so we'll continue to learn more about them as
we use them. For more detailed information on Yii migrations, see:
http://www.yiiframework.com/doc/guide/1.1/en/
database.migration

Naming conventions
You may have noticed that we defined our database table as well as all of the column
names in lowercase. Throughout our development, we will use lowercase for all table
names and column names. This is primarily because different DBMSs handle case
sensitivity differently. As one example, PostgreSQL treats column names as case
insensitive by default, and we must quote a column in a query condition if the column
contains mixed-case letters. Using lowercase would help eliminate this problem.

You may have also noticed that we used a tbl_ prefix in naming our projects table.
As of version 1.1.0, Yii provides integrated support for using a table prefix. A table
prefix is a string that is prepended to the names of the tables. It is often used in shared
hosting environments where multiple applications share a single database and use
different table prefixes to differentiate from each other; a sort of name-spacing for
your database objects. For example, one application could use tbl_ as a prefix while
another could use yii_. Also, some database administrators use this as a naming
convention to prefix database objects with an identifier as to what type of entity they
are or otherwise going to use. They use a prefix to help organize objects into similar
groups. Using table prefixes is a matter of preference and certainly not required.

Chapter 4

[61]

In order to take full advantage of the integrated table prefix support in Yii, one must
appropriately set the CDbConnection::tablePrefix property to be the desired
table prefix. Then, in SQL statements used throughout the application, one can use
{{TableName}} to refer to table names, where TableName is the name of the table,
but without the prefix. For example, if we were to make this configuration change,
we could use the following code to query all projects:

$sql='SELECT * FROM {{project}}';
$projects=Yii::app()->db->createCommand($sql)->queryAll();

But this is getting a little ahead of ourselves. Let's leave our configuration as it is for
now, and revisit this topic when we get into database querying a little later in our
application development.

Creating the AR model class
Now that we have the tbl_project table created, we need to create the Yii model
class to allow us to easily manage the data in that table. We introduced Yii's ORM
layer, Active Record (AR), back in Chapter 1, Meet Yii. Now we will see a concrete
example of that in the context of this application.

Configuring Gii
Back in Chapter 2, Getting Started when we were building our simple "Hello, World!" Yii
application, we introduced the code generation tool, Gii. If you recall, before we could
begin using Gii, we had to configure it for use within our application. We need to do so
again in our new TrackStar application. As a reminder, to configure Gii for use, open
up protected/config/main.php and the Gii module is defined as follows:

return array(
 …
 …
 'modules'=>array(
'gii'=>array(
 'class'=>'system.gii.GiiModule',
 'password'=>false,
 // If removed, Gii defaults to localhost only. Edit carefully
to taste.
 'ipFilters'=>array('127.0.0.1','::1'),
),
 …
),

Project CRUD

[62]

This configures Gii as an application module. We will cover Yii modules in detail later
in the book. The important thing at this point is to make sure this is added to the
configuration file and that you provide your password (or set the password to false
for development environments to avoid being prompted with the login screen). Now,
navigate to the tool by going to http://localhost/trackstar/index.php?r=gii.

Using Gii to create our Project AR class
The main menu page for Gii looks like the following:

Since we want to create a new model class for our tbl_project table, the Model
Generator option seems like the right choice. Clicking on that link takes us to the
following page:

Chapter 4

[63]

The Table Prefix field is primarily used to help Gii determine how to name the AR
class we are generating. If you are using a prefix, you can add this here. This way,
it won't use that prefix when naming the new class. In our case, we are using the
tbl_ prefix, so we should specify that here. Specifying this value will mean that our
new generated AR class will be named Project, rather than Tbl_project.

The next two fields are asking for our table name and the name of the class file we
want it to generate. Type in the name of our table tbl_project in the Table Name
field, and watch as the Model Class name autopopulates. The convention for the
Model Class name is the name of the table, minus the prefix, and starts with an
uppercase letter. So, it will assume a name of Project for our model class name, but
you can of course customize this.

The next few fields allow for further customization. The Base Class field is used
to specify the class from which our model class will extend. This will need to be
CActiveRecord or a child class thereof. The Model Path field lets us specify where in
the application directory structure to output the new file. The default is protected/
models/ (alias application.models). The Build Relations checkbox allows you
to decide whether or not to have Gii automatically define relationships between
AR objects by using the relationships defined between MySQL database tables. It is
checked by default. The last field allows us to specify a template on which the code
generation is based. We can customize the default one to meet any specific needs
we have that might be common to all such class files. For now, the default values for
these fields meet our needs just fine.

Proceed by clicking on the Preview button. This will result in the following table
displaying along the bottom of the page:

Project CRUD

[64]

This link allows you to preview the code that will be generated. Before you hit
Generate, click on the models/Project.php link. The following screenshot displays
what this preview will look like:

It provides a scrollable pop up so that we can preview the file that will be generated.

Okay, close this pop up and go ahead and click on the Generate button. Assuming
all went well, you should see something like the following screenshot displayed
towards the bottom of the page:

Chapter 4

[65]

Ensure that the path to which Gii is attempting to create the new file,
protected/models/ (or if you changed the location, whatever
directory path you specified in the Model Path form field), is writable by
your web server process prior to attempting to generate your new model
class. Otherwise, you will receive a write permissions error.

Gii has created a new Yii active record model class for us and named it Project.php
as we instructed. It has also placed it, as we instructed, in the default Yii location for
model classes, protected/models/. This class is a wrapper class for our tbl_project
database table. All of the columns in the tbl_project table are accessible as properties
of the Project AR class.

Enabling CRUD operations for projects
We now have a new AR model class, but now what? Typically in an MVC architecture,
we need a controller and a view to go with our model to complete the picture. In
our case, we need to be able to manage our projects in the application. We need to
be able to create new projects, retrieve information about existing projects, update
the information on existing projects, and delete existing projects. We need to add a
controller class that will handle these CRUD (Create, Read, Update, Delete) operations
on our model class, as well as a view file to provide a GUI to allow the user to do this
in the browser. One approach we could take is to open our favorite code editor and
create a new controller and view classes. But, luckily, we don't have to.

Creating CRUD scaffolding for projects
Once again, the Gii tool is going to rescue us from having to write common, tedious,
and often time-consuming code. CRUD operations are such a common need on
database tables created for applications that the developers of Yii decided to provide
this for us. If coming from other frameworks, you may know this by the term
scaffolding. Let's see how to take advantage of this in Yii.

Project CRUD

[66]

Navigate back to the main Gii menu located at http://localhost/trackstar/
index.php?r=gii and select the Crud Generator link. You will be presented with
the following screen:

Here we are presented with two input form fields. The first one is asking for us to
specify the Model Class against which we would like all of the CRUD operations
to be generated. In our case, this is the Project AR class we created earlier. So we'll
type in Project in this field. As we do this, we notice that the Controller ID field is
autopopulated with the name project. This is Yii's naming convention. Of course,
you can change this to be another name if you prefer, but we'll stick with this default
for now. We'll also use the default base controller class, Controller, which was
created for us when we initially created our application, as well as the default code
template file from which to generate the class file.

http://localhost/trackstar/index.php?r=gii

Chapter 4

[67]

With all of these fields filled in, clicking on the Preview button results in the
following table being displayed at the bottom of the page:

We can see that quite a few files are going to be generated. A new
ProjectController controller class that will house all of the CRUD action methods
is at the top of the list. The rest of the list represents all of the many separate view
files that are also going to be created. There is a separate view file for each of the
operations as well as one that will provide the ability to search project records. You
can, of course, choose not to generate some of these by changing the checkboxes in
the corresponding Generate column in the table. However, for our purposes, we
would like Gii to create all of these for us.

Go ahead and click on the Generate button. You should see the following success
message at the bottom of the page:

You may need to ensure that both /protected/controllers as
well as /protected/views under the root application directory
are both writable by the web server process. Otherwise, you will
receive permission errors, rather than this success result.

Project CRUD

[68]

We can now click on the try it now link to take our new functionality for a test drive.

Doing so takes you to a project listing page. This is the page that displays all of the
projects currently in the system. In our case, we have not created any yet, so the page
gives us a No results found message. Let's change this by creating a new project.

Creating a new project
On the project listing page (http://localhost/trackstar/index.php?r=project)
there is a little navigation area on the right-hand side of the page. Click on the Create
Project link. You'll discover this actually takes us to the login page, rather than a
form to create a new project. The reason for this is that the code Gii has generated
applies a rule that stipulates only properly authenticated users (that is logged in
users) can create new projects. Any anonymous user that attempts to access the
functionality to create a new project will be redirected to the login page. We'll cover
authentication and authorization in detail later. For now, go ahead and log in using
the credentials username as demo and password as demo.

A successful login should redirect you to the following URL:

http://localhost/trackstar/index.php?r=project/create

This page displays an input form for adding a new project, as shown in the
following screenshot:

http://localhost/trackstar/index.php?r=project

Chapter 4

[69]

Let's quickly fill out this form to create a new project. The form indicates there are
two required fields, Name and Description. The Gii code generator was smart
enough to know that since we defined the tbl_project.name and tbl_project.
description columns in our database table as NOT NULL, this should translate to
required form fields when creating a new project. Pretty cool, right?

So, we'll need to at least fill out these two fields. Give it the name, Test Project,
and give the description as Test project description. Clicking on the Create
button will post the form data back to the server and attempt to add a new project
record. If there are any validation errors, a simple error message will display that
highlights each field in error. A successful save will redirect to the specific listing for
the newly created project. Ours was successful and we were redirected to the page
http://localhost/trackstar/index.php?r=project/view&id=1, as shown in
the following screenshot:

As we briefly mentioned previously, one thing we notice about our new project
creation form is that both the name and the description fields were marked as being
required. This is due to the fact that we defined the name and description columns
in our database table to not allow for null values. Let's take a look at how these
required fields work in Yii.

Form field validation
When working with AR model classes within forms in Yii, setting validation rules
around form fields is a snap. This is done by specifying values in an array defined in
the rules() method within AR model classes.

Project CRUD

[70]

If you take a look at the code in the Project model class, (/protected/models/
Project.php) you'll discover that the rules() public function has already been
defined for us, and that there are already a few rules in there:

/**
 * @return array validation rules for model attributes.
 */
 public function rules()
 {
 // NOTE: you should only define rules for those attributes that
 // will receive user inputs.
 return array(
 array('name, description', 'required'),
 array('create_user_id, update_user_id', 'numerical',
'integerOnly'=>true),
 array('name', 'length', 'max'=>255),
 array('create_time, update_time', 'safe'),
 // The following rule is used by search().
 // Please remove those attributes that should not be searched.
 array('id, name, description, create_time, create_user_id,
update_time, update_user_id', 'safe', 'on'=>'search'),
);
 }	

The rules() method returns an array of rules. Each rule is of the following
general format:

Array('Attribute List', 'Validator', 'on'=>'Scenario List', …
additional options);

The Attribute List is a string of comma separated class property names to be
validated according to the Validator. The Validator specifies what kind of rule
should be enforced. The on parameter specifies a list of scenarios in which the rule
should be applied. For example, if we were to specify that a validation should be
applied in an insert scenario context, this would indicate that the rule should only
be applied during an insert of a new record.

If a specific scenario is not defined, the validation rule is applied in all scenarios
whenever validation is performed on the model data.

As of Version 1.1.11 of Yii, you can also specify an except
parameter, which allows you to exclude validations for certain
scenarios. The syntax is the same as for the on parameter.

Chapter 4

[71]

Finally, you can also specify additional options as name=>value pairs, which
are used to initialize the validator's properties. These additional options will vary
depending on the properties of the validator being specified.

The validator can either be a method in the model class, or a separate validator class.
If defined as a model class method, it must have the following signature:

/**
* @param string the name of the attribute to be validated
* @param array options specified in the validation rule
*/
public function validatorName($attribute,$params)
{
...
}

If using a separate class to define the validator, that class must extend from
CValidator.

There are actually three ways to specify a validator:

•	 Specify a method name in the model class itself
•	 Specify a separate class that is of a validator type (that is a class that

extends CValidator)
•	 Specify a predefined alias to an existing validator class in the Yii framework

Yii provides many predefined validator classes for you and also provides aliases
with which to reference these when defining rules. The complete list of predefined
validator class aliases as of Yii Version 1.1.12 is as follows:

•	 boolean: Alias of CBooleanValidator, validates the attribute that contains
either true or false

•	 captcha: Alias of CCaptchaValidator, validates the attribute value that is
same as the verification code displayed in a CAPTCHA

•	 compare: Alias of CCompareValidator, compares two attributes and
validates they are equal

•	 email: Alias of CEmailValidator, validates the attribute value that is a valid
e-mail address

•	 date: Alias of CDateValidator, validates the attribute value that is a valid
date, time, or date-time value

•	 default: Alias of CDefaultValueValidator, assigns a default value to the
attributes specified

Project CRUD

[72]

•	 exist: Alias of CExistValidator, validates the attribute value against a
specified table column in a database

•	 file: Alias of CFileValidator, validates the attribute value that contains the
name of an uploaded file

•	 filter: Alias of CFilterValidator, transforms the attribute value with a
specified filter

•	 in: Alias of CRangeValidator, validates if the data is within a prespecified
range of values, or exists within a specified list of values

•	 length: Alias of CStringValidator, validates whether the length of the
attribute value is within a specified range

•	 match: Alias of CRegularExpressionValidator, uses a regular expression
to validate the attribute value

•	 numerical: Alias of CNumberValidator, validates whether the attribute value
is a valid number

•	 required: Alias of CRequiredValidator, validates whether the attribute
value is empty or not

•	 type: alias of CTypeValidator, validates whether the attribute value is of a
specific data type

•	 unique: Alias of CUniqueValidator, validates that the attribute value is
unique, and is compared against a database table column

•	 url: Alias of CUrlValidator, validates whether the attribute value is a
valid URL

We see that in our rules() function, there is a rule defined that specifies the name
and description attributes and uses the Yii alias required to specify the validator:

array('name, description', 'required'),

It is the declaration of this validation rule that is responsible for the little red
asterisks next to the Name and Description fields on the new project form. This
indicates that this field is now required. If we go back to our new project creation
form (http://localhost/trackstar/index.php?r=project/create) and attempt
to submit the form without specifying either the Name or Description, we'll get a
nicely formatted error message telling us that we cannot submit the form with blank
values for these fields, as shown in the following screenshot:

http://localhost/trackstar/index.php?r=project/create
http://localhost/trackstar/index.php?r=project/create

Chapter 4

[73]

As we previously mentioned, the Gii code generation tool will
automatically add validation rules to the AR class based on the definitions
of the columns in the underlying table. We saw this for the Name and
Description columns defined with NOT NULL constraints that had
associated required validators defined. As another example, columns
that have length restrictions, like our name column being defined as
varchar(255), will have character limit rules automatically applied. We
notice by taking another look at our rules() method in the Project
AR class that Gii autocreated the rule array('name', 'length',
'max'=>255) for us based on its column definition. For more
information about validators see http://www.yiiframework.com/
doc/guide/1.1/en/form.model#declaring-validation-rules.

Reading the project
We have actually already seen this in action when we were taken to the project details
page after successfully saving a new project http://localhost/trackstar/index.
php?r=project/view&id=1. This page demonstrates the R in CRUD. However, to
view the entire listing, we can click on the List Project link in the right-hand side
column. This takes us back to where we started, except now we have our newly
created project in the project list. So, we have the ability to retrieve a listing of all of the
projects in the application, as well as view the details of each project individually.

Project CRUD

[74]

Updating and deleting projects
Navigating back to a project details page can be done by clicking on the little project
ID link on any of the projects in the listing. Let's do this for our newly created
project, which is ID: 1 in our case. Clicking on this link takes us to the project details
page for this project. This page has a number of action operations in its right-hand
side column that are shown in following screenshot:

We can see both of the Update Project and Delete Project links, which provide us
with the U and D in our CRUD operations respectively. We'll leave it up to you to
verify that these links work as expected.

The delete functionality is restricted to admin users; that is, you
have to be logged in using the username/password combination of
admin/admin. So, if you are verifying the delete functionality and
receive a 403 error, ensure you are logged in as an administrator. This
is discussed in more detail later, and we cover authentication and
authorization in great detail in a later chapter.

Managing projects in Admin mode
The last link that we have not covered in the previous screenshot depicting our
project operations is the Manage Project link. Go ahead and click on this link. It will
most likely result in an authorization error as shown in the following screenshot:

Chapter 4

[75]

The reason for this error is that this functionality invokes a simple access control feature
in Yii, and restricts access to admin users only. If you recall, when we logged into the
application in order to create a new project, we used demo/demo as our username/
password combination. This demo user does not have the authorization to access this
admin page. The code generated by Gii restricts the access to this functionality.

An administrator in this context is simply someone who has logged in with the
username/password combination of admin/admin. Go ahead and log out of the
application by clicking on Logout (demo) present in the main navigation bar. Then log
in again, but this time, use these administrator credentials. Once successfully logged in
as admin you should notice the top navigation logout link change to Logout (admin).
Then navigate back to a specific project listing page, for example, http://localhost/
trackstar/index.php?r=project/view&id=1, and try the Manage Project link
again. You should now see what is shown in the following screenshot:

http://localhost/trackstar/index.php?r=project/view&id=4
http://localhost/trackstar/index.php?r=project/view&id=4

Project CRUD

[76]

What we now see is a highly interactive version of our project listing page. It
displays all the projects in an interactive data table. Each row has inline links to view,
update, and delete each project. Clicking on any of the column header links sorts
the project list by that column value. And the little input boxes in the second row
allow you to search this project list by keywords within those individual column
values. The advanced search link exposes an entire search form providing the
ability to specify multiple search criteria to submit against one search. The following
screenshot displays this advanced search form:

We have basically implemented all of the functionality we set out to achieve in this
iteration, and haven't really had to code much of anything. In fact, with the help of
Gii, not only did we create all of the CRUD functionality, we have also implemented
basic project searching functionality that we were not expecting to achieve. Though
very basic, we have a fully functioning application, with features specific to a project
task tracking application, and have made very little effort to achieve it.

Of course we still have a lot of work to complete on our TrackStar application. All
of this scaffolding code is not intended to fully replace application development. It
provides us with an excellent starting point and foundation on which to continue to
build our application. As we work through all the details and nuances of how the
project functionality should work, we can rely on this autogenerated code to keep
things moving forward at a rapid pace.

Chapter 4

[77]

Summary
Even though we did not do much coding in this chapter, we accomplished quite a lot.
We created a new database table, which allowed us to see Yii Active Record (AR) in
action. We used the Gii tool to first create an AR model class to wrap our tbl_project
database table. We then demonstrated how to use the Gii code generation tool to
generate actual CRUD functionality in the web application. This amazing tool quickly
created the functionality we needed, and even took it a step further by providing us
with an administrative dashboard allowing us to search and sort our projects based on
different criteria. We also demonstrated how to implement model data validation and
how this translates to form field validation in Yii.

In the next chapter, we will build on what we have learned here and dive more
deeply into Active Record in Yii as we introduce related entities in our data model.

Managing Issues
In the previous chapter, we delivered the basic functionality around the project
entity. The project is at the foundation of the TrackStar application. However,
projects by themselves are not terribly useful. Projects are the basic containers
of the issues we want this application to manage. Since managing project issues
is the main purpose of this application, we want to start adding in some basic
issue-management functionality.

Feature planning
We already have the ability to create and list projects, but there is no way to manage
the issues related to the projects. At the end of this chapter, we want the application
to expose all CRUD operations on the project issues or tasks. (We tend to use the
terms issue and task interchangeably, but in our data model, a task will actually be
just one type of issue.) We also want to restrict all the CRUD operations on the issues
to be within the context of a specific project. That is, issues belong to projects. The user
must have selected an existing project to work within, prior to being able to perform
any CRUD operations on the project's issues.

In order to achieve the previously mentioned outlined goals, we need to:

•	 Design the database schema and build the objects to support project issues
•	 Create the Yii model classes that will allow the application to easily interact

with the database table(s) we created
•	 Create the controller class that will house the functionality to allow us to:

°° Create new issues
°° Retrieve a list of existing issues within a project from the database

Managing Issues

[80]

°° Update/edit existing issues
°° Delete existing issues

•	 Create views to render user interfaces for these (above) actions

This list is plenty to get us going. Let's get started by making the necessary
database changes.

Designing the schema
Back in Chapter 3, The TrackStar Application, we proposed some initial ideas about the
issue entity. We proposed that it have a name, a type, an owner, a requestor, a status,
and a description. We also mentioned when we created the tbl_project table that
we would be adding basic audit history information to each table we create, to
track the dates, times, and users who update the tables. However, types, owners,
requestors, and statuses are themselves their own entities. To keep our model flexible
and extensible, we'll model some of these separately. Owners and requestors are both
users of the system and as such will be housed in a separate table called tbl_user.
We have already introduced the idea of a user in the tbl_project table, as we added
the columns create_user_id and update_user_id to track the identifier of the user
who initially created the project, as well as the user who was responsible for last
updating the project details. Even though we have not formally introduced that table
yet, these fields are intended to be foreign keys to a user table. The owner_id and
requestor_id column in the tbl_issue table will also be foreign keys that relate
back to this tbl_user table.

We could model the type and status attributes in the same manner. However, until our
requirements demand this extra complexity in the model, we can keep things simple.
The type and status columns on the tbl_issue table will remain integer values that
can be mapped to named types and statuses. However, rather than complicating our
model by using separate tables, we will model these as basic class constant (const)
values within the AR model class we create for the issue entity. Don't worry if all of
this is a little fuzzy; it will make more sense in the coming sections.

Chapter 5

[81]

Defining some relationships
Since we are introducing the tbl_user table, we need to go back and define
the relationship between the users and projects. Back in Chapter 3, The TrackStar
Application, we specified that users (we called them project members) would be
associated with zero or more projects. We also mentioned that projects can also have
many (one or more) users. Since projects can have many users and these users can
be associated with many projects, we call this a many-to-many relationship between
projects and users. The easiest way to model a many-to-many relationship in a
relational database is to use an association table (also called an assignment table).
So we need to add this table to our model as well.

The following figure outlines a basic entity-relationship between the users, projects,
and issues. Projects can have zero to many users. A user needs to be associated with
at least one project but can be associated with many. Issues belong to one and only
one project, while projects can have from zero to many issues. Finally an issue is
assigned to (or requested by) one single user.

Building objects and their relationships
We have to create three new tables, namely tbl_issue, tbl_user, and our
association table tbl_project_user_assignment. You may recall that we
introduced Yii database migrations in Chapter 4, Project CRUD. As we are now ready
to make a change to our database structure, we'll use Yii migrations for this as to
better manage the application of these changes.

Managing Issues

[82]

Since we are adding these to our database all at the same time, we'll do this in one
migration. From the command line, change to the protected/ directory and issue
the following command:

$./yiic migrate create create_issue_user_and_assignment_tables

This will result in a new migration file being added to the protected/migrations/
directory.

Open up this newly created file and implement the safeUp() and safeDown() method
as follows:

 // Use safeUp/safeDown to do migration with transaction
 public function safeUp()
 {
 //create the issue table
 $this->createTable('tbl_issue', array(
 'id' => 'pk',
 'name' => 'string NOT NULL',
 'description' => 'text',
 'project_id' => 'int(11) DEFAULT NULL',
 'type_id' => 'int(11) DEFAULT NULL',
 'status_id' => 'int(11) DEFAULT NULL',
 'owner_id' => 'int(11) DEFAULT NULL',
 'requester_id' => 'int(11) DEFAULT NULL',
 'create_time' => 'datetime DEFAULT NULL',
 'create_user_id' => 'int(11) DEFAULT NULL',
 'update_time' => 'datetime DEFAULT NULL',
 'update_user_id' => 'int(11) DEFAULT NULL',
), 'ENGINE=InnoDB');

 //create the user table
 $this->createTable('tbl_user', array(
 'id' => 'pk',
 'username' => 'string NOT NULL',
 'email' => 'string NOT NULL',
 'password' => 'string NOT NULL',
 'last_login_time' => 'datetime DEFAULT NULL',
 'create_time' => 'datetime DEFAULT NULL',
 'create_user_id' => 'int(11) DEFAULT NULL',
 'update_time' => 'datetime DEFAULT NULL',
 'update_user_id' => 'int(11) DEFAULT NULL',
), 'ENGINE=InnoDB');

Chapter 5

[83]

 //create the assignment table that allows for many-to-many
//relationship between projects and users
 $this->createTable('tbl_project_user_assignment', array(
 'project_id' => 'int(11) NOT NULL',
 'user_id' => 'int(11) NOT NULL',
 'PRIMARY KEY (`project_id`,`user_id`)',
), 'ENGINE=InnoDB');

 //foreign key relationships

 //the tbl_issue.project_id is a reference to tbl_project.id
 $this->addForeignKey("fk_issue_project", "tbl_issue", "project_
id", "tbl_project", "id", "CASCADE", "RESTRICT");

 //the tbl_issue.owner_id is a reference to tbl_user.id
 $this->addForeignKey("fk_issue_owner", "tbl_issue", "owner_id",
"tbl_user", "id", "CASCADE", "RESTRICT");

 //the tbl_issue.requester_id is a reference to tbl_user.id
 $this->addForeignKey("fk_issue_requester", "tbl_issue",
"requester_id", "tbl_user", "id", "CASCADE", "RESTRICT");

 //the tbl_project_user_assignment.project_id is a reference to
tbl_project.id
 $this->addForeignKey("fk_project_user", "tbl_project_user_
assignment", "project_id", "tbl_project", "id", "CASCADE",
"RESTRICT");

 //the tbl_project_user_assignment.user_id is a reference to tbl_
user.id
 $this->addForeignKey("fk_user_project", "tbl_project_user_
assignment", "user_id", "tbl_user", "id", "CASCADE", "RESTRICT");

 }

 public function safeDown()
 {
 $this->truncateTable('tbl_project_user_assignment');
 $this->truncateTable('tbl_issue');
 $this->truncateTable('tbl_user');
 $this->dropTable('tbl_project_user_assignment');
 $this->dropTable('tbl_issue');
 $this->dropTable('tbl_user');
 }

Managing Issues

[84]

Here we have implemented the safeUp() and safeDown() methods rather than the
standard up() and down() methods. Doing this runs these statements in a database
transaction with the intent that they are committed or rolled back as a single unit.

In fact, since we are using MySQL, these create table and drop
table statements will not be run in a single transaction. Certain MySQL
statements cause implicit commits and as such using the safeUp() and
safeDown() methods in this case is not of much use. We will leave this
in to help the user understand why Yii migrations offer the safeUp()
and safeDown() methods. See http://dev.mysql.com/doc/
refman/5.5/en/implicit-commit.html for more details about this.

Now we can run the migration from the command line:

This migration has created our necessary database objects. Now we can turn our
focus to creating our active record model classes.

Creating active record model classes
Now that we have these tables created, we need to create the Yii model AR classes
to allow us to easily interact with these tables within the application. We did this
when creating the Project model class in the previous chapter, by using the
Gii code generation tool. We'll remind you of the steps here, but spare you of
all the screenshots. Please refer to Chapter 4, Project CRUD for the more detailed
walkthrough of using the Gii tool to create an active record class.

http://dev.mysql.com/doc/refman/5.5/en/implicit-commit.html
http://dev.mysql.com/doc/refman/5.5/en/implicit-commit.html

Chapter 5

[85]

Creating the Issue model class
Navigate to the Gii tool via http://localhost/trackstar/index.php?r=gii
and select the Model Generator link. Leave the table prefix as tbl_. Fill in the Table
Name field as tbl_issue, which will autopopulate the Model Class field as Issue.
Also ensure that the Build Relations checkbox is checked. This will ensure that our
relationships are automatically created for us in our new model class.

Once the form is filled out, click on the Preview button to get a link to a pop up
that will show you all of the code that is about to be generated. Then click on the
Generate button to actually create the new Issue.php model class file in the /
protected/models/ directory.

Creating the User model class
This is probably becoming old-hat for you at this point, so we are going to leave the
creation of the User AR class as an exercise for you. This particular class becomes
much more important in the next chapter, when we dive into user authentication
and authorization.

You may be asking, "What about the AR class for the tbl_project_user_
assignment table?". Although one could create an AR class for this table, it is not
necessary. The AR model provides an Object Relational Mapping (ORM) layer
to our application to help us work much more easily with our domain objects.
However, ProjectUserAssignment is not a domain object of our application. It is
simply a construct in a relational database to help us model and manage the many-
to-many relationship between the projects and users. Maintaining a separate AR
class to handle the management of this table is extra complexity that we can avoid
for the time being. We can manage the inserts, updates, and deletes on this table
using Yii's DAO directly.

Creating the issue CRUD operations
Now that we have our issue AR class in place, we can turn to building the
necessary functionality to manage our project issues. We'll again lean on the
Gii code generation tool to help us create the basics of this functionality. We did
this in detail for the projects in the previous chapter. I'll remind of you of the basic
steps for Issues here, once again:

1.	 Navigate to the Gii generator menu at http://localhost/trackstar/
index.php?r=gii, and select the Crud Generator link.

http://localhost/trackstar/index.php?r=gii
http://localhost/trackstar/index.php?r=gii

Managing Issues

[86]

2.	 Fill out the form using Issue as the value for the Model Class field. This will
autopopulate the Controller ID to also be Issue. The Base Controller Class
and Code Template fields can remain their predefined default values.

3.	 Click on the Preview button to get a list of all the files that the Gii tool is
proposing to create. The following screenshot shows this list of files:

4.	 You can click on each individual link to preview the code to be generated.
Once satisfied, click on the Generate button to have all of these files created.
You should receive the following message of success:

Using the issue CRUD operations
Let's try this out. Either click on the try it now link shown in the previous screenshot or
simply navigate to http://localhost/trackstar/index.php?r=issue. You should
be presented with something similar to what is shown in the following screenshot:

http://localhost/trackstar/index.php?r=issue
http://localhost/trackstar/index.php?r=issue

Chapter 5

[87]

Creating a new issue
Since we have not yet added any new issues, there are none to list. Let's change
that and create a new one. Click on the Create Issue link. (If this takes you to the
login page, then log in using either demo/demo or admin/admin. You'll properly be
redirected after a successful login.) You should now see a new Issue-Input form
similar to what is shown in the following screenshot:

Managing Issues

[88]

When looking at this input form, we can see that it has an input field for every
column in the database table, just as it is defined in the database table. However, as
we know from when we designed our schema and built our tables, some of these
fields are not direct input fields but rather represent relationships to other entities.
For example, rather than having a Type freeform text-input field on this form, we
should use a drop-down input form field that is populated with choices of the issue
types that are allowed. A similar argument could be made for the Status field. The
Owner and Requester fields should also be drop-downs, exposing choices of the
names of the users who have been assigned to work on the project under which the
issue resides. Also, since all issue management should be taking place within the
context of a specific project, the Project field should not even be a part of this form at
all. Lastly, the Create Time, Create User, Update Time, and Update User fields are
all values that should be calculated and determined once the form is submitted, and
should not be available for the user to directly manipulate.

It seems we have identified a number of corrections we would like to make on this
initial input form. As we mentioned in the previous chapter, the autocreated, CRUD
"scaffolding" code that is generated by the Gii tool is just a starting point. Rarely is it
enough on its own to meet all the specific functionality needs of an application.

Adding drop-down fields
We'll start with adding a drop-down for the issue types. Issues have just three types,
namely Bugs, Features, and Tasks. What we would like to see when creating a new
issue is a drop-down, input-type form field with these three choices. We will achieve
this by having the Issue model class itself provide a list of its available types. Since
we did not create a separate database table to hold our issue types, we'll add these as
class constants directly to our Issue active record model class.

At the top of the Issue model class, add the following three constant definitions:

const TYPE_BUG=0;
const TYPE_FEATURE=1;
const TYPE_TASK=2;

Now add a new method to this class, Issue::getTypeOptions(), which will return
an array based on these defined constants:

/**
 * Retrieves a list of issue types
 * @return array an array of available issue types.
 */
public function getTypeOptions()
{
 return array(

Chapter 5

[89]

 self::TYPE_BUG=>'Bug',
 self::TYPE_FEATURE=>'Feature',
 self::TYPE_TASK=>'Task',
);
}

We now have a way to retrieve the available list of issue types, but we still don't have
a drop-down field in the input form that displays these values that we can choose
from. Let's add that now.

Adding the issue type drop-down
Open up the file containing the new issue creation form protected/views/issue/_
form.php and find the lines that correspond to the Type field on the form:

<div class="row">
 <?php echo $form->labelEx($model,'type_id'); ?>
 <?php echo $form->textField($model,'type_id'); ?>
 <?php echo $form->error($model,'type_id'); ?>
</div>

These lines need a little clarification. In order to understand this, we need to refer to
some code towards the top of the _form.php file, which is given as follows:

<?php $form=$this->beginWidget('CActiveForm', array(
 'id'=>'issue-form',
 'enableAjaxValidation'=>false,
)); ?>

This is defining the $form variable using the CActiveForm widget in Yii. Widgets are
going to be covered in much more detail later. For now, we can understand this code
by understanding CActiveForm better. CActiveForm can be thought of as a helper
class that provides a set of methods to help us with creating forms that are associated
with a data model class. In this case, it is being used to create an input form based on
our Issue model class.

Managing Issues

[90]

To fully understand the variables in our view file, let's also review our controller
code that is rendering the view file(s). As has been previously discussed, one way to
pass data from the controller to the view is by explicitly declaring an array, the keys
of which will be the names of the available variables in the view files. Since this is the
create action for a new issue, the controller method rendering the form is IssueCont
roller::actionCreate(). This method is listed as follows:

/**
 * Creates a new model.
 * If creation is successful, the browser will be redirected to the
'view'
 * page.
 */
 public function actionCreate()
 {
 $model=new Issue;

 // Uncomment the following line if AJAX validation is needed
 // $this->performAjaxValidation($model);

 if(isset($_POST['Issue']))
 {
 $model->attributes=$_POST['Issue'];
 if($model->save())
 $this->redirect(array('view','id'=>$model->id));
 }

 $this->render('create',array(
 'model'=>$model,
));
 }

Here we see that when the view is being rendered, it is being passed an instance of the
Issue model class, which will be available in the view as a variable called $model.

Now let's go back to the code that is responsible for rendering the Type field on the
form. The first line is:

$form->labelEx($model,'type_id');

Chapter 5

[91]

This line is using the CActiveForm::labelEx() method to render an HTML label
for the issue model attribute type_id. It takes in an instance of the model class and
the corresponding model attribute for which we want a label generated. The model
class Issue:: attributeLabels() method will be used to determine the label.
If we take a peek at that method listed below, we see that the attribute type_id is
mapped to a label of 'Type', which is exactly what we see rendered as the label to
this form field:

public function attributeLabels()
{
 return array(
 'id' => 'ID',
 'name' => 'Name',
 'description' => 'Description',
 'project_id' => 'Project',
 'type_id' => 'Type',
 'status_id' => 'Status',
 'owner_id' => 'Owner',
 'requester_id' => 'Requester',
 'create_time' => 'Create Time',
 'create_user_id' => 'Create User',
 'update_time' => 'Update Time',
 'update_user_id' => 'Update User',
);
}

Using the labelEx() method is also what is responsible for our little red
asterisks next to our required fields. The labelEx() method will add an
additional CSS class name (CHtml::requiredCss, which defaults to 'required')
and asterisk (using CHtml::afterRequiredLabel, which defaults to ' <span
class="required">*') when the attribute is required.

The next line, <?php echo $form->textField($model,'type_id'); ?>, uses
the CActiveForm::textField() method to render a text-input field for our Issue
model attribute type_id. Any of the validation rules defined for type_id in the
model class Issue::rules() method will be applied as form validation rules to this
input form.

Managing Issues

[92]

Finally the line <?php echo $form->error($model,'type_id'); ?> uses the
CActiveForm::error() method to render any validation errors associated with the
type_id attribute upon submission.

You can try out this validation with the type field. The type_id column is defined as
an integer type in our MySQL schema definition, and because of this, Gii generated a
validation rule in the Issue::rules() method to enforce this:

 public function rules()
 {
 // NOTE: you should only define rules for those attributes that
 // will receive user inputs.
 return array(
 array('name', 'required'),
 array('project_id, type_id, status_id, owner_id, requester_id,
create_user_id, update_user_id', 'numerical', 'integerOnly'=>true),

So if we attempt to submit a string value in our Type form field, we will receive an
inline error right under the field, as depicted in the following screenshot:

Now that we understand better exactly what we have, we are in a better position to
change it. What we need to do is change this field from a free form, text-input field,
to a drop-down entry type. It probably comes as little surprise that the CActiveForm
class has a dropDownList() method that will generate a drop-down list for a model
attribute. Let's replace the line that calls $form->textField (in the file /protected/
views/issue/_form.php) with the following:

<?php echo $form->dropDownList($model,'type_id', $model-
>getTypeOptions()); ?>

Chapter 5

[93]

This still takes the earlier model as the first argument and the model attribute as the
second one. The third argument specifies the list of drop-down choices. This should
be an array of value=>display pairs. We already created our getTypeOptions()
method in the Issue.php model class to return an array of this format, so we can use
it directly.

It should be noted that Yii framework base classes make use of the
PHP _get "magic" function. This allows us, in our child classes, to write
methods such as getTypeOptions() and reference those methods as
class properties, using the syntax ->typeOptions. So we could have
also used the equivalent syntax when requesting our issue type options
array $model->typeOptions.

Save your work and look again at our issue input form. You should see a nice drop-
down menu of Issue-type choices in place of the freeform text field, as displayed in
the following screenshot:

Adding the status dropdown: do it yourself
We are going to take the same approach for the issue status. As mentioned back in
Chapter 3, The TrackStar application, when we introduced the application, issues can be
in one of the following three statuses:

•	 Not yet started
•	 Started
•	 Finished

We'll create three class constants in our Issue model class for the status values.
Then we'll create a new method, Issue::getStatusOptions(), to return an array
of our available issue statuses. And finally, we'll alter the _form.php file to render a
drop-down of status options rather than a freeform text-input field for the status.

Managing Issues

[94]

We are going to leave the implementation of the status drop-down to you. You can
follow the same approach that we took for the types. After you make this change, the
form should look similar to what is shown in the following screenshot:

We should also note that as we change these from freeform text-entry fields to
drop-down fields, it is good practice to also add a range validation to our rules()
method to ensure that the submitted value falls within the range of the values
allowed by the drop-down. In the previous chapter, we saw a list of all the validators
that the Yii framework provides. The CRangeValidator attribute, which uses an
alias of in, is a good choice to use for defining this validation rule. So we could define
such a rule as follows:

array('type_id', 'in', 'range'=>self::getAllowedTypeRange()),

And then we add a method to return an array of our allowed numerical type values:

public static function getAllowedTypeRange()
{
 return array(
 self::TYPE_BUG,
 self::TYPE_FEATURE,

Chapter 5

[95]

 self::TYPE_TASK,
);
}

Similarly do this for our status_id. We'll also leave this as an exercise for you
to implement.

Fixing the owner and requester fields
Another problem we notice with the issue creation form is that the owner and
requester fields are also freeform text-input fields. However, we know that these are
integer values in the issue table that hold foreign key identifiers to the id column of
the tbl_user table. So we also need to add drop-down fields for these fields. We
won't take the exact same approach we did for the type and status attributes, as the
issue owners and requesters need to be taken from the tbl_user table. Also, since
not every user in the system will be associated with the project under which the issue
resides, these issues cannot be used as drop-downs populated with the data taken
from the entire tbl_user table. We need to restrict the list to just those users that are
associated with this project.

This brings up another thing we need to address. As mentioned in the Feature
planning section at the beginning of this chapter, we need to manage our issues
within the context of a specific project. That is, a specific project should be chosen
before you are able to create a new issue. Currently, our application does not enforce
this workflow.

Let's address these changes one by one. First, we will alter the application to enforce
a valid project to be identified prior to using any functionality to manage the issues
associated with that project. Once a project is chosen, we'll make sure that both our
owner and requester drop-down choices are restricted to only the users that are
associated with that project.

Enforcing a project context
We want to ensure that a valid project context is present before we allow access to
managing the issues. To do this, we are going to implement what is called a filter.
A filter in Yii is a bit of code that is configured to be executed either before or after
a controller action is executed. One common example is if we want to ensure that
a user is logged in prior to executing a controller action method. We could write a
simple access filter that would check this requirement before the action is executed.
Another example is if we want to perform some extra logging or other auditing logic
after an action has been executed. We could write a simple audit filter to provide this
post-action processing.

Managing Issues

[96]

In this case, we want to ensure that a valid project has been chosen prior to
creating a new issue. So we'll add a project filter to our IssueController class
to accomplish this.

Defining filters
A filter can be defined either as a controller class method or it can be a separate class.
When using the simple-method approach, the method name must begin with the
word filter and have a specific signature. For example, if we were going to create a
filter method called someMethodName, our full filter method would look like:

public function filterSomeMethodName($filterChain)
{
...
}

The other approach is to write a separate class to perform the filter logic. When using
the separate-class approach, the class must extend CFilter and then override at least
one of the preFilter() or postFilter() methods depending on whether the logic
should be executed before the action is invoked, or after.

Adding a filter
So, let's add a filter to our IssueController class to handle the checking for a valid
project. We'll take the class-method approach.

Open up protected/controllers/IssueController.php and add the following
method at the bottom of the class:

public function filterProjectContext($filterChain)
{
 $filterChain->run();
}

Okay, we now have a filter defined. However it does not do much yet. It simply
executes $filterChain->run(), which continues the filtering process and allows the
execution of the action methods that are being filtered by this method. This brings up
another point. How do we define which action methods should use this filter?

Chapter 5

[97]

Specifying the filtered actions
The Yii framework base class for our controller classes is CController. It has a
filters() method that needs to be overridden in order to specify the actions on
which the filters need to be applied. In fact, this method has already been overridden
in our IssueController.php class. This was done for us when we used the Gii tool
to autogenerate this class. It already added a simple accessControl filter, which is
defined in the CController base class, to handle some basic authorization to ensure
that the user has sufficient permission to perform certain actions. If you are not
already logged in and click on the Create Issue link, you will be directed to the login
page for authentication before being allowed to create a new issue. The access control
filter is responsible for this. We'll be covering it in more detail when we focus on user
authentication and authorization in the next chapter.

For now, we just need to add our new filter to this configuration array. To
specify that our new filter should be applied to the create action, alter the
IssueController::filters() method by adding the highlighted code, as follows:

/**
 * @return array action filters
 */
public function filters()
{
 return array(
 'accessControl', // perform access control for CRUD operations
 'projectContext + create', //check to ensure valid project context
);
}

The filters() method should return an array of filter configurations. The previous
code returns a configuration that specifies that the projectContext filter, which
is defined as a method within the class, should be applied to the actionCreate()
method. The configuration syntax allows for the "+" and "-" symbols to be used to
specify whether a filter should or should not be applied. For example, if we decided
that we wanted this filter to be applied to all the actions except the actionUpdate()
and actionView() action methods, we could specify:

return array(
 'projectContext - update, view' ,
);

Managing Issues

[98]

You should not specify both the plus and the minus operators at the same time.
Only one should be needed for any given filter configuration. The plus operator
says "Only apply the filter to the following actions". The minus operator says "Apply
the filter to ALL actions except the following". If neither the "+" nor the "-" is in the
configuration, the filter will be applied to all the actions.

At the moment, we'll keep this restricted to just the create action. So as defined
previously with the + create configuration, our filter method will be called when
any user attempts to create a new issue.

Adding filter logic
Okay, so now we have a filter defined and we have configured it to be called upon
every attempted actionCreate() method call within the issue controller class.
However, it still does not perform the necessary logic. Since we want to ensure the
project context before the action is attempted, we need to put the logic in the filter
method before the call to $filterChain->run().

We'll add a project property to the controller class itself. We'll then use a querystring
parameter in our URLs to indicate the project identifier. Our preaction filter will
check to see if the existing project attribute is null; if so, it will use the querystring
parameter to attempt to select the project based on the primary key identifier. If
successful, the action will execute; if it fails, an exception will be thrown. Here is the
relevant code needed to perform all of this:

class IssueController extends CController
{

 /**
 * @var private property containing the associated Project model
instance.
 */
 private $_project = null;

 /**
 * Protected method to load the associated Project model class
 * @param integer projectId the primary identifier of the
associated Project
 * @return object the Project data model based on the primary key
 */
 protected function loadProject($projectId) {
 //if the project property is null, create it based on input id
 if($this->_project===null)
 {
 $this->_project=Project::model()->findByPk($projectId);

Chapter 5

[99]

 if($this->_project===null)
 {
 throw new CHttpException(404,'The requested project does not
exist.');
 }
 }

 return $this->_project;
 }

 /**
 * In-class defined filter method, configured for use in the above
filters()
 * method. It is called before the actionCreate() action method is run
in
 * order to ensure a proper project context
 */
 public function filterProjectContext($filterChain)
 {
//set the project identifier based on GET input request variables
if(isset($_GET['pid']))
 $this->loadProject($_GET['pid']);
 else
 throw new CHttpException(403,'Must specify a project before
performing this action.');

 //complete the running of other filters and execute the requested
action
 $filterChain->run();

 }
 ...
}

With this in place, if you now attempt to create a new issue by clicking on the Create
Issue link from the issue listing page at this URL http://localhost/trackstar/
index.php?r=issue, you should see an "Error 403" error message, also displaying
the error text we specified previously.

This is good. It shows that we have properly implemented the code to prevent a
new issue from being created when no project has been identified. The quickest way
to get past this error is to simply add a pid querystring parameter to the URL used
for creating new issues. Let's do that so we can supply the filter with a valid project
identifier and proceed to the form to create a new issue.

Managing Issues

[100]

Adding the project ID
Back in Chapter 4, Project CRUD, we added several new projects to the application
as we were testing and implementing the CRUD operations on projects. So it is
likely that you still have a valid project in your development database. If not, simply
use the application to create a new project again. Once complete, take note of the
project ID created, as we need to add this ID to the new issue URL.

The link we need to alter is in the view file for the issue listing page /protected/
views/issue/index.php. Towards the top of that file, you will see where the link is
defined for creating a new issue in our menu items. This is specified in the following
highlighted code:

$this->menu=array(
 array('label'=>'Create Issue', 'url'=>array('create')),
 array('label'=>'Manage Issue', 'url'=>array('admin')),
);

To add a querystring parameter to this link, we simply append a name=>value pair in
the defined array for the url parameter. The code we added for the filter is expecting
the querystring parameter to be pid (for project id). Also, since we are using the first
(project id = 1) project for this example, we will alter the Create Issue link as such:

array('label'=>'Create Issue', 'url'=>array('create', 'pid'=>1)),

Now when you view the issue listing page, you will see that the Create Issue
hyperlink opens a URL with a querystring parameter appended at the end:

http://localhost/trackstar/index.php?r=issue/create&pid=1

This querystring parameter allows the filter to properly set the project context. So
this time when you click on the link, rather than getting the 403 error page, the form
to create a new issue will be displayed.

For more details on using filters in Yii, see http://www.
yiiframework.com/doc/guide/1.1/en/basics.
controller#filter.

http://localhosthostname/trackstarasctrak/index.php?r=issue/create&pid=1
http://localhosthostname/trackstarasctrak/index.php?r=issue/create&pid=1

Chapter 5

[101]

Altering the project details page
Adding the project id to the URL for the Create New Issue link was a good first step to
ensure that our filter was working as expected. However, we have now hardcoded the
link to always associate a new issue with the project ID = 1. This of course is not what
we want. What we want to do is have the menu option for creating a new issue be a
part of the project details page. In this way, once you have chosen a project from the
project listing page, the specific project context will be known, and we can dynamically
append that project ID to the create new issue link. Let's make that change.

Open up the project details view file /protected/views/project/view.php. At the
top of this file, you will notice the menu items contained within the $this->menu
array. We need to add another link to create a new issue to the end of this list of
defined menu links:

$this->menu=array(
 array('label'=>'List Project', 'url'=>array('index')),
 array('label'=>'Create Project', 'url'=>array('create')),
 array('label'=>'Update Project', 'url'=>array('update',
'id'=>$model->id)),
 array('label'=>'Delete Project', 'url'=>'#', 'linkOptions'=>array('s
ubmit'=>array('delete','id'=>$model->id),'confirm'=>'Are you sure you
want to delete this item?')),
 array('label'=>'Manage Project', 'url'=>array('admin')),
 array('label'=>'Create Issue', 'url'=>array('issue/create',
'pid'=>$model->id)),
);

What we have done is moved the menu option to create a new issue for the page that
lists the details for a specific project. We used a link similar to the one before, but this
time we had to specify the full controllerID/actionID pair (issue/create). Also, rather
than hardcoding the project ID to be 1, we have used the $model variable within the
view file, which is the AR class for the specific project. In this way, regardless of the
project we choose, this variable will always reflect the correct project id attribute for
that project.

With this in place, we can also remove the other link where we hardcoded the project
ID to be 1 in the protected/views/issue/index.php view file.

Managing Issues

[102]

Now that we have the project context properly set when creating a new issue, we can
remove the project field as a user input form field. Open up the view file for the new
issue form /protected/views/issue/_form.php. Remove the following lines that
are associated with the project input field:

<div class="row">
 <?php echo $form->labelEx($model,'project_id'); ?>
 <?php echo $form->textField($model,'project_id'); ?>
 <?php echo $form->error($model,'project_id'); ?>
</div>

However, as the project_id attribute will not be submitted with the form, we will
need to set the project_id parameter based on the one set from the filter we just
implemented. Since we know the associated project ID already, let's explicitly set the
Issue::project_id to the value of the id property of the project instance created by
our previously implemented filter. So alter the IssueController::actionCreate()
method as the following highlighted code suggests:

public function actionCreate()
{
 $model=new Issue;
 $model->project_id = $this->_project->id;

Now when we submit the form back, the project_id attribute for the issue active
record instance will be correctly set. Even though we don't have our owner and
requestor dropdowns set yet, we can submit the form and a new issue will be created
with the proper project ID set.

Returning back to the owner and requester
dropdowns
Finally, we can turn back to what we were setting out to do, which is to change the
owner and requester fields to be the drop-down choices of the valid members of that
project. In order to properly do this, we need to associate some users with a project.
Since user management is the focus of the upcoming chapters, we will do this
manually by adding the association directly to the database via direct SQL. Let's add
two test users using the following SQL:

INSERT INTO tbl_user (email, username, password) VALUES ('test1@
notanaddress.com','User One', MD5('test1')), ('test2@notanaddress.
com','User Two', MD5('test2'));

Chapter 5

[103]

We are using the one-way MD5 hashing algorithm here because of its ease
of use and because it is widely available with the 5.x versions of MySQL
and PHP. However, it is now known that MD5 is "broken" as a one-way
hashing algorithm with regard to security, and it is not suggested that
you use this hashing algorithm in a production environment. Please
consider using Bcrypt for your real production applications. Here are
some URLs providing more information on Bcrypt:
http://en.wikipedia.org/wiki/Bcrypt

http://php.net/manual/en/function.crypt.php

http://www.openwall.com/phpass/

When you run this on the trackstar database, it will create two new users in our
system with the IDs 1 and 2. Let's also manually assign these two users to project #1
with the following SQL:

INSERT INTO tbl_project_user_assignment (project_id, user_id)
VALUES (1,1), (1,2);

After running the previous SQL statements, we have two valid members assigned to
project #1.

One of the wonderful features of relational Active Record within Yii is the ability to
access the valid members of a project that an issue belongs to, directly from the issue
$model instance itself. When we used the Gii tool to initially create our issue model
class, we ensured that the Build Relations checkbox was ticked. This instructed Gii
to look at the underlying database and define the relevant relationships. This can
be seen in the relations() method within /protected/models/Issue.php. Since
we created this class after adding the appropriate relationships to the database, the
method should look something like the following:

 /**
 * @return array relational rules.
 */
 public function relations()
 {
 //NOTE: you may need to adjust the relation name and the related
 // class name for the relations automatically generated below.
 return array(
 'requester' => array(self::BELONGS_TO, 'User', 'requester_id'),
 'owner' => array(self::BELONGS_TO, 'User', 'owner_id'),
 'project' => array(self::BELONGS_TO, 'Project', 'project_id'),
);
 }

http://php.net/manual/en/function.crypt.php
http://php.net/manual/en/function.crypt.php

Managing Issues

[104]

The //NOTE comment from the previous code snippet suggests that you may have
slightly different, or want slightly different, class attribute names and encourages you
to adjust them as needed. This array configuration defines properties on the model
instance that are themselves other AR instances. With these relations in place, we can
access the related AR instances incredibly easily. For example, say we want to access
the project to which an issue is associated. We can do so using the following syntax:

//create the model instance by primary key:
$issue = Issue::model()->findByPk(1);
//access the associated Project AR instance
$project = $issue->project;

Since we created our Project model class prior to having other tables and
relationships defined in our database, there are no relations defined yet. However
now that we have some relationships defined, we need to add these to the
Project::relations() method. Open up the project AR class /protected/models/
Project.php and replace the entire relations() method with the following:

 /**
 * @return array relational rules.
 */
 public function relations()
 {
return array(
 'issues' => array(self::HAS_MANY, 'Issue', 'project_id'),
 'users' => array(self::MANY_MANY, 'User', 'tbl_project_
user_assignment(project_id, user_id)'),
);
 }

With these in place, we can easily access all of the issues and/or users associated
with a project with incredibly easy syntax. For example:

//instantiate the Project model instance by primary key:
$project = Project::model()->findByPk(1);
//get an array of all associated Issue AR instances
$allProjectIssues = $project->issues;
//get an array of all associated User AR instance
$allUsers = $project->users;
//get the User AR instance representing the owner of
//the first issue associated with this project
$ownerOfFirstIssue = $project->issues[0]->owner;

Chapter 5

[105]

Normally we would have to write complicated SQL join statements to access such
related data. Using relational AR in Yii saves us from this complexity and tedium.
We can now access these relationships in a very elegant and concise, object-oriented
manner that is very easy to read and understand.

Generating the data to populate the dropdowns
We'll follow a similar approach as we did for the status and type drop-down data in
order to implement a valid user dropdown. We'll add a getUserOptions() method
to our Project model class.

Open up the file /protected/models/Project.php and add the following method
to the bottom of the class:

/**
 * @return array of valid users for this project, indexed by user IDs
 */
public function getUserOptions()
{
 $usersArray = CHtml::listData($this->users, 'id', 'username');
 return $usersArray;
}

Here we are using Yii's CHtml helper class to help us create an array of
id=>username pairs from each user associated with the project. Remember that the
users property (defined in the relations() method) in the project class mapped to
an array of user AR instances. The CHtml::listData() method can take in this list
and produce a valid array in a suitable format for CActiveForm::dropDownList().

Now that we have our getUserOptions() method returning the data we need, we
should implement the dropdown to display that returned data. We have already
used a filter to set the associated project ID from the $_GET request, and we used
this value to set the project_id attribute on the new issue instance at the beginning
of the IssueController::actionCreate() method. So now, through the lovely
power of Yii's relational AR features, we can easily populate our dropdown of users
using the associated Project model. Here are the changes we need to make in the
issue form:

Open up the view file containing the input form elements /protected/views/
issue/_form.php, and find the two text-input field form element definitions for
owner_id and requester_id and replace it with the following code:

<?php echo $form->textField($model,'owner_id'); ?>
with this:

Managing Issues

[106]

<?php echo $form->dropDownList($model,'owner_id', $model->project-
>getUserOptions()); ?>
and also replace this line:
<?php echo $form->textField($model,'requester_id'); ?>
with this:
<?php echo $form->dropDownList($model,'requester_id', $model->project-
>getUserOptions()); ?>

Now if we view our issue creation form again, we see two nicely populated drop-
down fields for the Owner and Requester:

Making one last change
Since we already have the create issue form view file open, let's quickly make one
last change. The creation time and user as well as the last updated time and user
fields that we have on every table for basic history and auditing purposes should
not be exposed to the user. Later we will alter the application logic to automatically
populate these fields upon inserts and updates. For now, let's just remove them as
inputs on the form.

Just completely remove the following lines from /protected/views/issue/_form.
php:

<div class="row">
 <?php echo $form->labelEx($model,'create_time'); ?>
 <?php echo $form->textField($model,'create_time'); ?>
 <?php echo $form->error($model,'create_time'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'create_user_id'); ?>
 <?php echo $form->textField($model,'create_user_id'); ?>
 <?php echo $form->error($model,'create_user_id'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'update_time'); ?>
 <?php echo $form->textField($model,'update_time'); ?>

Chapter 5

[107]

 <?php echo $form->error($model,'update_time'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'update_user_id'); ?>
 <?php echo $form->textField($model,'update_user_id'); ?>
 <?php echo $form->error($model,'update_user_id'); ?>
 </div>

The following screenshot shows what our new issue creation form now looks like
with all of these changes:

The rest of the CRUD
The goal of this chapter is to implement all the CRUD operations for Issues. We have
finalized the creation functionality, but we still need to complete the read, update,
and delete of issues. Luckily, most of the foundation has already been laid by using
the Gii CRUD generation functionality. However, since we want to manage all the
issues within the context of a project, we need to make some adjustments to how we
access this functionality.

Managing Issues

[108]

Listing the issues
Even though there is the actionIndex() method in the IssueController class
that displays a list of all the issues in the database, we don't have a need for this
functionality as it is currently coded. Rather than a separate, standalone page that
lists all the issues in the database, we want to only list the issues that are associated
with a specific project. So we'll alter the application to display the listing of the issues
as part of the project details page. Since we are taking advantage of the relational AR
model in Yii, it will be a snap to make this change.

Altering the project controller
First let's alter the actionView() method in the ProjectController class. Since
we want to display a list of the issues associated with a specific project, we can do
this on the same page as the project details page. The method actionView() is the
method that displays the project details.

Alter that method to be:

 /**
 * Displays a particular model.
 * @param integer $id the ID of the model to be displayed
 */
 public function actionView($id)
 {
 $issueDataProvider=new CActiveDataProvider('Issue',
array(
 'criteria'=>array(
 'condition'=>'project_id=:projectId',
 'params'=>array(':projectId'=>$this-
>loadModel($id)->id),
),
 'pagination'=>array(
 'pageSize'=>1,
),
));

 $this->render('view',array(
 'model'=>$this->loadModel($id),
 'issueDataProvider'=>$issueDataProvider,
));

 }

Chapter 5

[109]

Here we are using the CActiveDataProvider framework class to provide data using
CActiveRecord objects. It will use the associated AR model class to retrieve data
from the database in a manner that can be used very easily with a great, built-in,
framework-listing component called CListView. We'll use this component to display
a list of our issues in the view file. We have used the criteria property to specify the
condition that it should only retrieve the issues associated with the project being
displayed. We also used the pagination property to limit the issue list to just one
issue per page. We set this very low so we can quickly demonstrate the paging
features by just adding another issue. We'll demonstrate this soon.

The last thing we did was add this data provider to the array defined in the call to
render(), to make it available to the view file in a $issueDataProvider variable.

Altering the project view file
As we just mentioned, we'll use a framework component called CListView to
display our list of issues on the project details page. Open up /protected/views/
project/view.php and add this to the bottom of that file:

<h1>Project Issues</h1>

<?php $this->widget('zii.widgets.CListView', array(
 'dataProvider'=>$issueDataProvider,
 'itemView'=>'/issue/_view',
)); ?>

Here we are setting the dataProvider property of CListView to be our issue
data provider that we created above. And then we are configuring it to use the
protected/views/issue/_view.php file as a template for rendering each item
in the data provider. This file was already created for us by the Gii tool when we
generated our CRUD for the issues. We are making use of it here to display the
issues on the project details page.

You may recall from way back in Chapter 1, Meet Yii, that Zii is the
official extension library that is packaged with the Yii framework. These
extensions are developed and maintained by the core Yii framework
team. You can read more about Zii here: http://www.yiiframework.
com/doc/guide/1.1/en/extension.use#zii-extensions

Managing Issues

[110]

We need to also make a couple of changes to the /protected/views/issue/_view.
php file that we specified as a layout template for each issue. Alter the entire contents
of that file to be the following:

<div class="view">

 <?php echo CHtml::encode($data->getAttributeLabel('name')); ?>:</
b>
 <?php echo CHtml::link(CHtml::encode($data->name), array('issue/
view', 'id'=>$data->id)); ?>

 <?php echo CHtml::encode($data->getAttributeLabel('descripti
on')); ?>:
 <?php echo CHtml::encode($data->description); ?>

 <?php echo CHtml::encode($data->getAttributeLabel('type_id'));
?>:
 <?php echo CHtml::encode($data->type_id); ?>

 <?php echo CHtml::encode($data->getAttributeLabel('status_id'));
?>:
 <?php echo CHtml::encode($data->status_id); ?>

</div>

Now if we save and view our results by looking at the project details page for project
number 1 (http://localhost/trackstar/index.php?r=project/view&id=1),
and assuming you have created at least one example issue under that project (if not,
just use the Create Issue link from this page to create one), we should see what is
displayed in the following screenshot:

Chapter 5

[111]

Since we set the pagination property of our data provider very low (remember
we set it to just 1), we can add one more issue to demonstrate the built-in paging
functionality. Adding one more issue changes the display of the issues to have links
that allow us to go from page to page within our project issues' listing, as depicted in
the following screenshot:

Managing Issues

[112]

Final tweaks
We now have a list of our issues associated with a project and are displaying them
on the project details page. We also have the ability to view the details of an issue
(that is Read them) as well as links to Update and Delete issues. So our basic CRUD
operations are in place.

However, there are still a few items that need to be addressed before we can
complete this section of our application. One thing we will notice is that the issues
display list is showing numeric ID numbers for the Type, Status, Owner, and
Requester fields. We should change this so that the text values for those are displayed
instead. Also, since the issues are under a specific project already, it is a bit redundant
to have the project ID displayed as part of the issue list data. So we can remove that.
Finally, we need to address some of the navigational links that are displayed on the
various other issue-related forms to ensure that we are always returning to this project
details page as the starting place for all of our issue management.

We'll tackle these one at a time.

Getting the status and type text to display
Previously we added public methods to the Issue AR class, to retrieve the status and
type options to populate the dropdowns on the issue creation form. We need to add
similar methods on this AR class to return the text for a specific status or type ID.

Add the following two, new public methods to the Issue model class (/protected/
models/Issue.php) to retrieve the status and type text for the current issue:

 /**
 * @return string the status text display for the current issue
 */
 public function getStatusText()
 {
 $statusOptions=$this->statusOptions;
 return isset($statusOptions[$this->status_id]) ?
$statusOptions[$this->status_id] : "unknown status ({$this->status_
id})";
 }

 /**
 * @return string the type text display for the current issue
 */
 public function getTypeText()
 {
 $typeOptions=$this->typeOptions;

Chapter 5

[113]

 return isset($typeOptions[$this->type_id]) ? $typeOptions[$this-
>type_id] : "unknown type ({$this->type_id})";
 }

These return the status text value ("Not Yet Started", "Started", or "Finished") and
type text value ("Bug", "Feature", or "Task") for the Issue instance.

Adding the text display to the form
Now that we have our two new public methods that will return the valid status and
type text for our listing to display, we need to make use of them. Alter the following
lines of code in /protected/views/issue/_view.php.

Change this <?php echo CHtml::encode($data->type_id); ?> to this:

<?php echo CHtml::encode($data->getTypeText()); ?>

And this <?php echo CHtml::encode($data->status_id); ?> to this:

<?php echo CHtml::encode($data->getStatusText()); ?>

After these changes, our issues listing page for Project #1, http://localhost/
trackstar/index.php?r=issue&pid=1, no longer displays integer values for
our issue type and status fields. It now looks like what is displayed in the
following screenshot:

Since we are using the same view file to display our issues listing on our project
details page, these changes are reflected there as well.

Managing Issues

[114]

Changing the issue detail view
We also need to make a few other changes to the details view of the issue. Currently
if we view the issue details, it is displayed as in the following screenshot:

This is using a view file we have not yet altered. It is still displaying the project ID,
which we don't need to display, as well as the Type and Status as integer values
rather than their associated text values. Opening up the view file used to render
this display, /protected/views/issue/view.php, we notice that it is using the Zii
extension widget CDetailView, which we have not seen before. This is similar to
the CListView widget used to display the listing, but is used to display the details
of a single data model instance rather than for displaying a list view of many. The
following is the relevant code from this file showing the use of this widget:

<?php $this->widget('zii.widgets.CDetailView', array(
 'data'=>$model,
 'attributes'=>array(
 'id',
 'name',
 'description',
 'project_id',
 'type_id',
 'status_id',
 'owner_id',
 'requester_id',
 'create_time',
 'create_user_id',
 'update_time',

Chapter 5

[115]

 'update_user_id',
),
)); ?>

Here we are setting the data model of the CDetailView widget to be the Issue
model class instance (that is the specific instance we want to display the details
of), and then setting a list of attributes of the model instance to be displayed in
the rendered detail view. An attribute can be specified as a string in the format of
Name:Type:Label, of which both Type and Label are optional, or as an array itself.
In this case just the name of the attributes are specified.

If we specify an attribute as an array, we can customize the display further by
declaring a value element. We will take this approach in order to specify the model
class methods Issue::getTypeText() and Issue::getStatusText() to be used to
get the text values for the Type and Status fields respectively.

Let's change this use of CDetailView to use the following configuration:

<?php $this->widget('zii.widgets.CDetailView', array(
 'data'=>$model,
 'attributes'=>array(
 'id',
 'name',
 'description',
 array(
 'name'=>'type_id',
 'value'=>CHtml::encode($model->getTypeText())
),
 array(
 'name'=>'status_id',
 'value'=>CHtml::encode($model->getStatusText())
),
 'owner_id',
 'requester_id',
),
)); ?>

Here we have removed a few attributes from being displayed at all, namely the
project_id, create_time, update_time, create_user_id, and update_user_id
attributes. We will handle the population and display of some of these later, but for
now we can just remove them from the detail display.

Managing Issues

[116]

We also changed the declaration of the type_id and status_id attributes to use an
array specification so that we could use the value element. We have specified that the
corresponding Issue::getTypeText() and Issue::getStatusText() methods be
used for getting the values of these attributes. With these changes in place, viewing
the issue details page shows the following:

Okay, we are getting much closer to what we want, but there are still a couple of
changes we need to make.

Displaying owner and requester names
Things are looking better, but we still see integer identifiers being displayed for the
Owner and Requester rather than the actual usernames. We'll take a similar approach
to what we did for the type and status text displays. We'll add two new public
methods on the Issue model class to return the names of these two properties.

Using relational AR
Since our issues and users are represented as separate database tables and related
through a foreign key relationship, we can access the owner and requester
username directly from $model in the view file. Utilizing the power of Yii's relational
AR model features, displaying the username attribute of the related User model class
instance is a snap.

As we have mentioned, the model class Issue::relations() method is where the
relationships are defined. If we take a peek at this method, we see the following:

/**
 * @return array relational rules.
 */
 public function relations()
 {

Chapter 5

[117]

 // NOTE: you may need to adjust the relation name and
//the related class name for the relations automatically generated
//below.
 return array(
 'owner' => array(self::BELONGS_TO, 'User', 'owner_id'),
 'project' => array(self::BELONGS_TO, 'Project', 'project_id'),
 'requester' => array(self::BELONGS_TO, 'User', 'requester_id'),
);
 }

The highlighted code is what is most relevant for our needs. There are both owner
and requester attributes defined as relations to the User model class. These
definitions specify that the values of these attributes are User model class instances.
The owner_id and requester_id parameters specify the unique primary key of
their respective User class instances. So we can access these just as we do our other
attributes of the Issue model class.

To display the username of the owner and requester User class instances, we once
again change our CDetailView configuration to the following:

<?php $this->widget('zii.widgets.CDetailView', array(
 'data'=>$model,
 'attributes'=>array(
 'id',
 'name',
 'description',
 array(
 'name'=>'type_id',
 'value'=>CHtml::encode($model->getTypeText())
),
 array(
 'name'=>'status_id',
 'value'=>CHtml::encode($model->getStatusText())
),
 array(
 'name'=>'owner_id',
 'value'=>isset($model->owner)?CHtml::encode($model->owner-
>username):"unknown"
),
 array(
 'name'=>'requester_id',
 'value'=>isset($model->requester)?CHtml::encode($model-
>requester->username):"unknown"),
),
)); ?>

Managing Issues

[118]

After making these changes, our issues detail listing is starting to look pretty good.
The following screenshot shows the progress we made so far:

Making some final navigation tweaks
We are very close to completing the functionality that we set out to implement
within this chapter. The only thing left to do is to clean up our navigation just a little.
You may have noticed that there are still some options available that allow the user
to navigate to an entire listing of issues, or to create a new issue, outside of a project
context. For the purposes of our TrackStar application, everything we do with issues
should be within the context of a specific project. Earlier we enforced this project
context for creating a new issue, which is a good start, but we still need to make a
few changes.

One thing that we will notice is that the application still allows the user to navigate
to a listing of all issues, across all projects. For example, on an issue detail page, such
as http://localhost/trackstar/index.php?r=issue/view&id=1, we see that in
the right-hand column menu navigation there are the links List Issue and Manage
Issue, corresponding to http://localhost/trackstar/index.php?r=issue/
index and http://localhost/trackstar/index.php?r=issue/admin respectively
(remember that to access the admin page, you have to be logged in as admin/admin).
These still display all the issues across all the projects. So we need to limit this list to
a specific project.

Since these links originate from the issue details page and that specific issue has
an associated project, we can first alter the links to be passed in a specific project
ID, and then use that project ID as the criteria to limit our issue's query in both the
IssueController::actionIndex() and IssueController::actionAdmin()
methods.

http://localhost/trackstar/index.php?r=issue/view&id=1
http://localhost/trackstar/index.php?r=issue/view&id=1
http://localhost/trackstar/index.php?r=issue/index
http://localhost/trackstar/index.php?r=issue/admin
http://localhost/trackstar/index.php?r=issue/admin

Chapter 5

[119]

First let's alter the links. Open up the /protected/views/issue/view.php file
and locate the array of menu items towards the top of the file. Change the menu
configuration to be:

$this->menu=array(
 array('label'=>'List Issues', 'url'=>array('index', 'pid'=>$model-
>project->id)),
 array('label'=>'Create Issue', 'url'=>array('create', 'pid'=>$model-
>project->id)),
 array('label'=>'Update Issue', 'url'=>array('update', 'id'=>$model-
>id)),
 array('label'=>'Delete Issue', 'url'=>'#', 'linkOptions'=>array('su
bmit'=>array('delete','id'=>$model->id),'confirm'=>'Are you sure you
want to delete this item?')),
 array('label'=>'Manage Issues', 'url'=>array('admin', 'pid'=>$model-
>project->id)),
);

The changes made are highlighted. We have added a new querystring parameter to
the Create Issue link, as well as to the issue listing page and the issue admin listing
page. We already knew that we had to make this change for the create link, since we
have previously implemented a filter to enforce that a valid project context be made
available prior to creating a new issue. We won't have to make any further changes
relative to this link. But for the index and admin links, we will need to alter their
corresponding action methods to make use of this new querystring variable.

Since we have already configured a filter to load the associated project using the
querysting variable, let's take advantage of this. We'll add to the filter configuration so
that our filter method is called prior to both the IssueController::actionIndex()
and IssueController::actionAdmin() methods being executed. Change the
IssueController::filters() method as such:

public function filters()
 {
 return array(
 'accessControl', // perform access control for CRUD operations
 'projectContext + create index admin', //perform a check to
ensure valid project context
);
 }

Managing Issues

[120]

With this in place, the associated project will be loaded and available for use. Let's
use it in our IssueController::actionIndex() method. Alter that method to be:

 public function actionIndex()
 {
$dataProvider=new CActiveDataProvider('Issue', array(
 'criteria'=>array(
 'condition'=>'project_id=:projectId',
 'params'=>array(':projectId'=>$this->_project->id),
),
));
 $this->render('index',array(
 'dataProvider'=>$dataProvider,
));
 }

Here, as we have done before, we are simply adding a condition to the creation of
the model data provider to only retrieve the issues associated with the project. This
will limit the list of issues to just the ones under the project.

We need to make the same change to the admin listing page. However, this view
file /protected/views/issue/admin.php is using the results of the model class
Issue::search() method to provide the listing of the issues. So we actually need to
make two changes to enforce the project context with this listing.

First we need to alter the IssueController::actionAdmin() method to set the
correct project_id attribute on the model instance it is sending to the view. The
following highlighted code shows this necessary change:

public function actionAdmin()
 {
 $model=new Issue('search');

 if(isset($_GET['Issue']))
 $model->attributes=$_GET['Issue'];

 $model->project_id = $this->_project->id;

 $this->render('admin',array(
 'model'=>$model,
));
 }

Chapter 5

[121]

Then we need to add to our criteria in the Issue::search() model class method.
The following highlighted code identifies the change that we need to make to
this method:

public function search()
 {
 // Warning: Please modify the following code to remove attributes
that
 // should not be searched.

 $criteria=new CDbCriteria;

 $criteria->compare('id',$this->id);

 $criteria->compare('name',$this->name,true);

 $criteria->compare('description',$this->description,true);

 $criteria->compare('type_id',$this->type_id);

 $criteria->compare('status_id',$this->status_id);

 $criteria->compare('owner_id',$this->owner_id);

 $criteria->compare('requester_id',$this->requester_id);

 $criteria->compare('create_time',$this->create_time,true);

 $criteria->compare('create_user_id',$this->create_user_id);

 $criteria->compare('update_time',$this->update_time,true);

 $criteria->compare('update_user_id',$this->update_user_id);

 $criteria->condition='project_id=:projectID';

 $criteria->params=array(':projectID'=>$this->project_id);

 return new CActiveDataProvider(get_class($this), array(
 'criteria'=>$criteria,
));
 }

Managing Issues

[122]

Here, we have removed the $criteria->compare() call using project_id with the
direct $criteria->condition() that the project_id value be exactly equal to our
project context. With these changes in place, the issues listed on the admin page are
now restricted to be only those that are associated with the specific project.

There are several places throughout the view files under /protected/
views/issues/ that contain links that require a pid querystring to
be added in order to work properly. We leave it as an exercise to the
reader to make the appropriate changes following the same approach
as provided in these examples. As we proceed with our application
development, we'll assume that all the links to create a new issue or to
display a list of issues are properly formatted to contain the appropriate
pid querystring parameter.

Summary
We were able to cover a lot of different topics in this chapter. Based on the
relationship between issues, projects, and users within our application, the
implementation of our issue-management functionality was significantly more
complicated than our project entity management that we worked on in the previous
chapter. Fortunately, Yii was able to come to our rescue many times to help alleviate
the pain of having to write all of the code needed to address this complexity.

We leaned on our good friend Gii for Active Record model creation as well as for
the initial implementation of all basic CRUD operations against the issue entity. We
again used Yii migrations to help facilitate our needed database schema changes
to support our issue functionality. We got to use relational Active Record in Yii,
and saw how easy it is to retrieve related database information using this feature.
We introduced controller filters as a means to tap into the request life cycle and
implement business logic before and/or after controller action methods. And we
demonstrated how to use dropdowns in our Yii forms.

Chapter 5

[123]

We have made a lot of progress on our basic application thus far, and have done so
without having to write a lot of code. The Yii framework itself has done most of the
heavy lifting. We now have a working application that allows us to manage projects
and also manage the issues within those projects. This is the heart of what our
application is trying to achieve. We should feel proud of the accomplishments thus far.

However, we still have a long way to go before this application is truly ready
for production use. A major missing piece is all of the needed functionality
around user management. In the next two chapters, we will be diving into user
authentication and authorization. We'll start by showing how Yii user authentication
works, and start authenticating our users against the usernames and passwords
stored in the database.

User Management
and Authentication

We have made a lot of progress in a very short amount of time. The basic foundation
of our TrackStar application has been laid. We now have the ability to manage
projects and issues within projects, which is the primary purpose of this application.
Of course, there is still a lot left to do.

Back in Chapter 3, The TrackStar Application, when we were introducing this
application, we described it as a user-based application that provides the ability to
create user accounts and grants access to the application features once a user has
been authenticated and authorized. In order for this application to be useful to more
than one person we need to add the ability to manage users within projects. This is
going to be the focus of the next two chapters.

Feature planning
When we used the yiic command-line tool to initially create our TrackStar
application, we noticed that basic login functionality was automatically created for
us. The login page allows for two username/password credential combinations,
demo/demo and admin/admin. You may recall that we had to log in to the application
in order to perform some of our CRUD operations on our project and issue entities in
the previous two chapters.

This basic authentication skeleton code provides a great start, but we need to make
a few changes in order to support any number of users. We also need to add user
CRUD functionality to the application to allow us to manage these multiple users.
This chapter is going to focus on extending the authentication model to use the
tbl_user database table and add the needed functionality to allow for basic user
data management.

User Management and Authentication

[126]

In order to achieve the above outlined goals, we will need to work on the following:

•	 Create the controller classes that will house the functionality to allow us to:
°° Create new users
°° Retrieve a list of existing users from the database
°° Update/edit existing users
°° Delete existing users

•	 Create the view files and presentation tier logic that will:
°° Display the form to allow for new user creation
°° Display a listing of all the existing users
°° Display the form to allow the editing of an existing user
°° Add a delete button so we can delete users

•	 Make adjustments to the create new user form so that it can be used by
external users as a self-registration process

•	 Alter the authentication process to use the database to validate the
login credentials

User CRUD
As we are building a user-based web application, we must have a way to add
and manage users. We added a tbl_user table to our database in Chapter 5,
Managing Issues. You may recall that we left it as an exercise to the reader to create
the associated AR model class. If you are following along and did not create the
necessary user model class, you will need to do so now.

The following is a brief reminder on using the Gii code creation tool to create the
model class:

1.	 Navigate to the Gii tool via http://localhost/trackstar/index.
php?r=gii and select the Model Generator link.

2.	 Leave the table prefix as tbl_. Fill in the Table Name field as tbl_user,
which will autopopulate the Model Class name field as User.

3.	 Once the form is filled out, click on the Preview button to get a link to a pop
up that will show you all of the code about to be generated.

4.	 Finally, click on the Generate button to actually create the new User.php
model class file in the /protected/models/ directory.

http://localhost/trackstar/index.php?r=gii#_blank
http://localhost/trackstar/index.php?r=gii#_blank

Chapter 6

[127]

With the User AR class in place, creating the CRUD scaffolding is a snap.
We have done this before, using the Gii tool. As a reminder, the following
are the necessary steps:

1.	 Navigate to the tool via http://localhost/trackstar/index.php?r=gii.
2.	 Click on the Crud Generator link from the list of available generators.
3.	 Type in User for the Model Class name field. The corresponding Controller

ID will autopopulate with User.
4.	 You will then be presented with options to preview each file prior to

generating. Click on the Generate button, which will generate all of the
associated CRUD files in their proper locations.

With this in place, we can view our user listing page at http://localhost/
trackstar/index.php?r=user/index. In the previous chapter, we manually
created a couple of users in our system so that we could properly handle the
relationships between projects, issues, and users. This is why we see a couple of
users listed on this page. The following screenshot shows how this page is displayed
for us:

We can also view the new Create User form by visiting http://localhost/
trackstar/index.php?r=user/create. If you are not currently logged in, you will
be first routed to the login page before being able to view the form. So you might
have to log in using demo/demo or admin/admin to view this form.

http://localhost/trackstar/index.php?r=gii#_blank
http://localhost/trackstar/index.php?r=user#_blank
http://localhost/trackstar/index.php?r=user#_blank
http://localhosthostname/tasctrak/index.php?r=user/create#_blank
http://localhosthostname/tasctrak/index.php?r=user/create#_blank

User Management and Authentication

[128]

Having created and used our CRUD operation functionality first on our project
entity, and then again with issues, we are very familiar at this point with how these
features are initially implemented by the Gii code generation tool. The generated
code for creating and updating is a great start, but needs some adjusting to meet the
specific application requirements. The form we just generated for creating a new
user is no exception. It has an input form field for every single column that has been
defined in the tbl_user table. We don't want to expose all of these fields for user
input. The columns for last login time, creation time and user, and update time and
user should all be set programmatically after the form is submitted.

Updating our common audit history columns
Back in the previous chapters, when we introduced our Project and Issue CRUD
functionality, we also noticed that our forms had more input fields than they should.
Since we have defined all of our database tables to have the same creation and
update time and user columns, every one of our autocreated input forms has these
fields exposed. We completely ignored these fields when dealing with the project
creation form back in Chapter 4, Project CRUD. Then, with the new issue creation
form in Chapter 5, Managing Issues, we took the step to remove the fields from
displaying in the form, but we never added in the logic to properly set these values
when a new row is added.

Let's take a minute to add in this needed logic. Since all of our entity tables,
tbl_project, tbl_issue, and tbl_user, have the same columns defined, we
could add our logic to a common base class and then have each of the individual
AR classes extend from this new base class. This is a common approach to applying
the same functionality to entities of the same type. However, Yii components—that is
any instance of CComponent or a derived class of CComponent, which are typically the
majority of your classes in a Yii application—offer you another and arguably more
flexible alternative.

Component behavior
Behaviors in Yii are classes implementing the IBehavior interface, and whose
methods can be used to extend the functionality of components by being attached to
the component, rather than the component explicitly extending the class. Behaviors
can be attached to multiple components and components can attach multiple
behaviors. This re-use of behaviors across components makes them very flexible, and
by being able to attach multiple behaviors to the same component, we are able to
achieve a kind of multiple inheritance for our Yii component classes.

Chapter 6

[129]

We are going to use this approach to add the needed functionality to our model
classes. The reason we are taking this approach, rather than just adding the logic
directly to our User model class, is because our other model classes, Issue and
Project, also need this same logic. Rather than duplicate the code in every AR
model class, placing the functionality in behaviors, and then attaching the behaviors
to the model classes, will allow us to properly set these fields for every AR model
class in just one place.

In order for a component to use the methods of a behavior, the behavior has to
be attached to the component. This is as simple as calling the attachBehavior()
method on a component:

$component->attachBehavior($name, $behavior);

In the previous code, $name is a unique identifier for the behavior within the
component. Once attached, the component can call the methods defined in the
behavior class:

$component->myBehaviorMethod();

In the previous code, myBehaviorMethod() is defined in the $behavior class, but
can be called as if it was defined in the $component class.

For model classes, we can add our desired behaviors to the behaviors() method,
which is the approach we will take for these model classes. Now we just need to
create a behavior to attach.

In fact, the Zii extension library, which is packaged with the Yii framework, already
has a ready-made behavior that will update our date-time columns, create_time
and update_time, which we have on each of our underlying tables. This behavior is
called CTimestampBehavior. So, let's put this behavior to use.

Let's start with our User model class. Add the following method to protected/
models/User.php:

public function behaviors()
{
 return array(
 'CTimestampBehavior' => array(
 'class' => 'zii.behaviors.CTimestampBehavior',
 'createAttribute' => 'create_time',
 'updateAttribute' => 'update_time',
 'setUpdateOnCreate' => true,
),
);
}

User Management and Authentication

[130]

Here we are attaching the Zii extension library's CTimestampBehavior to our User
model class. We have specified the create time and update time attributes and have
also configured the behavior to set the update time when a new record is created. With
this in place, we can try it out. Create a new user, and you'll see the create_time and
update_time records being automatically inserted for us. Pretty cool, right?

This is great, but we need to repeat this in our other model classes. We could
duplicate the behaviors() method in each one, and continue to do so as we add
more model classes. Alternatively, we could put this in a common base class and
have each of our model classes extend this new base class. This way, we would only
need to define the behaviors() method once.

We need to insert our create_user_id and update_user_id columns as well when
we save and update a record. We could handle this in a number of ways. Since
multiple behaviors can be attached to a component, we could create a new behavior,
that is similar to CTimestampBehavior, which updates the create and update user
ID columns. Or, we could simply extend CTimestampBehavior, and add the extra
functionality to this child class. Or we could tap into the model beforeSave event
directly and set our necessary fields there. Extending the existing behavior to add this
extra functionality would probably make the most sense in a real-world application;
however, to demonstrate another approach, let's tap into the active record beforeSave
event, and do this in a common base class from which all of our AR model classes can
extend. This way, you'll have exposure to a couple of different approaches and have
more options to choose from when building your own Yii applications.

Chapter 6

[131]

So, we need to create a new base class for our AR model classes. We'll also make this
new class abstract since it should not be instantiated directly. First, go ahead and
remove the behaviors() method from the User AR class, as we'll put this in our
base class. Then create a new file, protected/models/TrackStarActiveRecord.
php, and add the following code:

<?php
abstract class TrackStarActiveRecord extends CActiveRecord
{
 /**
 * Prepares create_user_id and update_user_id attributes before
saving.
 */

 protected function beforeSave()
 {

 if(null !== Yii::app()->user)
 $id=Yii::app()->user->id;
 else
 $id=1;

 if($this->isNewRecord)
 $this->create_user_id=$id;

 $this->update_user_id=$id;

 return parent::beforeSave();
 }

 /**
 * Attaches the timestamp behavior to update our create and update
times
 */
 public function behaviors()
 {
 return array(
 'CTimestampBehavior' => array(
 'class' => 'zii.behaviors.CTimestampBehavior',
 'createAttribute' => 'create_time',
 'updateAttribute' => 'update_time',
 'setUpdateOnCreate' => true,
),
);
 }

}

User Management and Authentication

[132]

Here, as discussed, we are overriding the CActiveRecord::beforeSave() method.
This is one of the many events that CActiveRecord exposes to allow customization
of its process workflow. There are two methods exposed that allow us to tap into the
record saving workflow and perform any necessary logic either right before or right
after the active record is saved: beforeSave() and afterSave(). In this case, we
have decided to explicitly set our create and update user fields just prior to saving
the active record, that is just before it is written to the database.

We determine whether or not we are dealing with a new record (that is an insert) or
an existing record (that is an update) by using the property $this->isNewRecord,
and set our fields appropriately. We then make sure to invoke the parent
implementation by returning parent::beforeSave() to ensure it has a chance
to do everything it needs to do. We are performing a NULL check on Yii::app()-
>user to handle instances where we may be using this model class outside of a
web application context, for example in a Yii console application (covered in a later
chapter). If we don't have a valid user, we are simply defaulting to the first user, id
= 1, which we could set up to be a super user.

Also, as discussed, we have moved our behaviors() method to this base class so
that all AR model classes that extend it will have this behavior attached.

To try this out, we now need to alter each of the three existing AR classes Project.
php, User.php, and Issue.php to extend from our new abstract class rather than
directly from CActiveRecord. So, for example, rather than the following:

class User extends CActiveRecord
{
…}

We need to have:

class User extends TrackStarActiveRecord
{
…}

We need to make similar changes for our other model classes.

Now if we add another new user, we should see all four of our audit history columns
populated with timestamps and user IDs respectively.

Chapter 6

[133]

With these changes now in place, we should remove these fields from each of the
forms for creating new projects, issues, and users (we already removed them from
the issues form in the previous chapter). The HTML for these form fields is in the
protected/views/project/_form.php, protected/views/issue/_form.php, and
protected/views/user/_form.php files. The lines we need to remove from each of
these files are as follows:

<div class="row">
 <?php echo $form->labelEx($model,'create_time'); ?>
 <?php echo $form->textField($model,'create_time'); ?>
 <?php echo $form->error($model,'create_time'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'create_user_id'); ?>
 <?php echo $form->textField($model,'create_user_id'); ?>
 <?php echo $form->error($model,'create_user_id'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'update_time'); ?>
 <?php echo $form->textField($model,'update_time'); ?>
 <?php echo $form->error($model,'update_time'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'update_user_id'); ?>
 <?php echo $form->textField($model,'update_user_id'); ?>
 <?php echo $form->error($model,'update_user_id'); ?>
 </div>

And from the user creation form, protected/views/user/_form.php, we can also
remove the last login time field:

<div class="row">
 <?php echo $form->labelEx($model,'last_login_time'); ?>
 <?php echo $form->textField($model,'last_login_time'); ?>
 <?php echo $form->error($model,'last_login_time'); ?>
 </div>

User Management and Authentication

[134]

Since we are removing these from being form inputs, we should also remove the
validation rules defined for these fields in the associated rules method. These
validation rules are defined to ensure the data submitted by the user is valid and
correctly formatted. Removing the rules also prevents them from being able to
be a part of the bulk assignment of properties that occurs when we take all of the
submitted querystring or post variables and assign their values to our AR model
properties. For example, we see lines like the following in our create and update
controller actions for AR models:

$model->attributes=$_POST['User'];

This is doing a mass assignment of all of the model attributes from the posted
form fields. As an added security measure, this only works for attributes that have
validation rules assigned for them. You can use the CSafeValidator as a way to
mark model attributes that don't otherwise have any validation rules as being safe
for this mass assignment.

Since these fields are not going to be filled in by the user, and we don't need them to
be massively assigned, we can remove the rules.

Okay, so let's remove them. Open up protected/models/User.php and in the
rules() method, remove the following two rules:

array('create_user_id, update_user_id', 'numerical',
'integerOnly'=>true),
array('last_login_time, create_time, update_time', 'safe'),

The project and issue AR classes have similar rules defined, but not identical.
When removing those rules, be sure to leave in the rules that do still apply to
the user input fields.

The removal of the rule for the last_login_time attribute above was intentional.
We should remove this from being exposed as a user input field as well. This field
needs to be updated automatically upon a successful login. Since we had the view
file open and were removing the other fields, we decided to remove this one now
as well. However, we will wait to add the necessary application logic until after we
make a few other changes and cover a few other topics.

Chapter 6

[135]

Actually, while we still have our hands in this validation rules method for the User
class, we should make another change. We want to ensure that the e-mail as well as
the username for every user is unique. We should validate this requirement when
the form is submitted. Also, we should validate that the data submitted for the e-mail
conforms to a standard e-mail format. You may recall from back in Chapter 4, Project
CRUD that we introduced Yii's built-in validators, and two of these are perfect for
our needs. We'll use the CEmailValidator and CUniqueValidator classes to achieve
our validation needs. We can quickly add these rules by adding the following two
lines of code to this rules() method:

array('email, username', 'unique'),
array('email', 'email'),

The entire User::rules() method should now look like the following:

public function rules()
 {
 // NOTE: you should only define rules for those attributes that
 // will receive user inputs.
 return array(
 array('email', 'required'),
array('email, username, password', 'length', 'max'=>255,
array('email, username', 'unique'),
array('email', 'email'),
 // The following rule is used by search().
 // Please remove those attributes that should not be searched.
 array('id, email, username, password, last_login_time,
create_time, create_user_id, update_time, update_user_id', 'safe',
'on'=>'search'),
);
 }

The unique declaration in the above rule is an alias that refers to Yii's built-in
validator, CUniqueValidator. This validates the uniqueness of the model class
attribute against the underlying database table. With the addition of this validation
rule, we will receive an error when attempting to enter either an e-mail and/or
username that already exists in the database. Also, with the addition of the e-mail
validation, we will receive an error when the value in the e-mail form field is not of a
correct e-mail format.

User Management and Authentication

[136]

When we first created our tbl_user table in the previous chapter, we added two
test users so we would have some data to play with. The first of these two users has
an e-mail address of test1@notanaddress.com. Try to add another user using this
same e-mail. The following screenshot shows the error message received and the
highlighting of the field in error after such an attempt:

Submitting a value that is not in a valid e-mail format will also produce an
error message.

Adding a password confirmation field
In addition to the changes we just made, we should add a new field to force the user
to confirm the password they entered. This is a standard practice on user registration
forms and helps the user not to make a mistake when entering this important
piece of information. Fortunately, Yii comes with another built-in validator,
CCompareValidator, which does exactly what you think it might do. It compares the
values of two attributes, and returns an error if they are not equal.

In order to take advantage of this built-in validation, we need to add a new
attribute to our model class. Add the following attribute to the top of the User
model AR class:

public $password_repeat;

Chapter 6

[137]

We named this attribute by appending _repeat to the name of the attribute we
want to compare against. The compare validator will allow you to specify any
two attributes to compare, or compare an attribute to a constant value. If no
comparison attribute or value is specified when declaring the compare rule, it will
default to looking for an attribute beginning with the same name as the one being
compared, with the addition of _repeat appended to the end. This is why we
named the attribute in this manner. Now we can add a simple validation rule to the
User::rules() method as follows:

array('password', 'compare'),

If not using the _repeat convention, you would need to specify the attribute with
which you want the comparison performed. For example, if we wanted to compare
the $password attribute to an attribute named $confirmPassword, we could use:

array('password', 'compare', 'compareAttribute'=>'confirmPassword'),

Since we have explicitly added the $password_repeat attribute to the user AR class,
and there is no validation rule defined for it, we need to also tell the model class to
allow this field to be set in a bulk manner when the setAttributes() method is
called. As previously mentioned, we do this by explicitly adding our new attribute
to the safe attributes list for our User model class. To do this, add the following to the
User::rules() array:

array('password_repeat', 'safe'),

Let's make one more change to our validation rules. All of the fields we currently
have on the user form should be required. Currently, our required rule is only being
applied to the email field. While we are making changes to this User::rules()
method, let's add username and password to this list as well:

array('email, username, password, password_repeat', 'required'),

For more information on validation rules, see: http://
www.yiiframework.com/doc/guide/1.1/en/
form.model#declaring-validation-rules

Okay, now all of our rules are set. However, we still need to add the password
confirmation field to the form. Let's do that now.

User Management and Authentication

[138]

To add this field, open up protected/views/user/_form.php, and add the
following code block below the password field:

<div class="row">
 <?php echo $form->labelEx($model,'password_repeat'); ?>
 <?php echo $form->passwordField($model,'password_repeat',array('si
ze'=>60,'maxlength'=>255)); ?>
 <?php echo $form->error($model,'password_repeat'); ?>
 </div>

With all of these form changes in place, the Create User form should look as depicted
in the following screenshot:

And now, if we attempt to submit the form with different values in the
Password and Password Repeat fields, we will be met with an error as
shown in the following screenshot:

Chapter 6

[139]

Hash the password
One last change we should make before we leave the new user creation process is to
create a hashed version of the user's password before we store it in our database. It
is a very common practice to apply a one-way hashing algorithm on sensitive user
information before adding it to persistent storage.

We will add this logic to the User.php AR class by taking advantage of another method
of CActiveRecord that allows us to customize the default active record workflow. This
time we'll override the afterValidate() method and apply a basic one-way hash to
the password after we validate all the input fields, but before we save the record.

Similar to our use of the CActiveRecord::beforeSave()
method when setting our create and update timestamps, here we are
overriding the CActiveRecord::beforeValidate() method.
This is one of the many events that CActiveRecord exposes to allow
customization of its process workflow. As a quick reminder, if you do
not explicitly send false as a parameter when calling the save()
method on an AR class, the validation process will be triggered. This
process performs the validations as specified in the rules() method
within the AR class. There are two methods exposed that allow us
to tap into the validation workflow and perform any necessary logic
either right before or right after the validation is performed, that is,
beforeValidate() and afterValidate(). In this case, we have
decided to hash the password just after performing the validation.

Open up the User AR class and add the following to the bottom of the class:

 /**
 * apply a hash on the password before we store it in the database
 */
 protected function afterValidate()
 {
 parent::afterValidate();
 if(!$this->hasErrors())
 $this->password = $this->hashPassword($this->password);
 }

 /**
 * Generates the password hash.
 * @param string password
 * @return string hash
 */
 public function hashPassword($password)
 {
 return md5($password);
 }

User Management and Authentication

[140]

We mentioned this in the previous chapter, but it is worth mentioning
again. We are using the one-way MD5 hashing algorithm here because
of its ease of use and that it is widely available on 5.x Versions of MySQL
and PHP. However, it is now known that MD5 is "broken" as a one-way
hashing algorithm with regard to security and it is not suggested that you
use this hashing algorithm in a production environment. Please consider
using Bcrypt for your real, production applications. The following are
some URLs providing more information on Bcrypt:

•	 http://en.wikipedia.org/wiki/Bcrypt
•	 http://php.net/manual/en/function.crypt.php
•	 http://www.openwall.com/phpass/

With this in place, it will hash the password just after all of the other attribute
validations have successfully passed.

This approach works fine for brand new records, but for updates, if
the user is not updating his/her password information, it runs the risk
of hashing an already hashed value. We could handle this in a number
of ways, but to keep things simple for now, we will need to ensure
we ask the user to supply a valid password every time they desire to
update their user data.

We now have the ability to add new users to our application. Since we initially
created this form using the Gii tool's Crud Generator link, we also have read,
update, and delete functionality for users. Try it out by adding some new users,
viewing a list of them, update some of the information, and then delete a few of the
entries to ensure everything is working as expected. (Remember that you will need
to be logged in as admin, as opposed to demo, in order to perform the deletes.)

Authenticating users using the database
As we know, a basic login form and user authentication process was created
for us simply by using the yiic command to create our new application. This
authentication scheme is very simple. It interrogates the input form's username/
password values, and if they are either demo/demo or admin/admin, it passes,
otherwise it fails. This is obviously not intended to be a permanent solution, but
rather a foundation on which to build. We are going to build upon this by altering
the authentication process to use our tbl_user database table that we already have
as part of our model. But before we start changing the default implementation, let's
take a closer look at how Yii implements an authentication model.

http://php.net/manual/en/function.crypt.php
http://php.net/manual/en/function.crypt.php

Chapter 6

[141]

Introducing the Yii authentication model
Central to the Yii authentication framework is an application component called user,
which, in the most general case, is an object implementing the IWebUser interface.
The specific class used by our default implementation is the framework class,
CWebUser. This user component encapsulates all the identity information for the
current user of the application. This component was configured for us as part of the
autogenerated application code when we initially created our application using the
yiic tool. The configuration can be seen in the protected/config/main.php file,
under the components array element:

'user'=>array(
 // enable cookie-based authentication
 'allowAutoLogin'=>true,
),

Since it is configured as an application component, with the name 'user', we can
access it at any place throughout our application using Yii::app()->user.

We also notice that the class property, allowAutoLogin, is being set here as well.
This property is false by default, but setting it to true enables user information
to be stored in persistent browser cookies. This data is then used to automatically
authenticate the user upon subsequent visits. This is what will allow us to have a
Remember Me checkbox on the login form so that, if the user chooses, they can be
automatically logged into the application upon subsequent visits to the site.

The Yii authentication framework defines a separate entity to house the actual
authentication logic. This is called an identity class, and in general can be any
class that implements the IUserIdentity interface. One of the primary roles of
this class is to encapsulate the authentication logic to easily allow for different
implementations. Depending on the application requirements, we may need to
validate a username and password against values stored in a database, or allow
users to log in with their OpenID credentials, or integrate with an existing LDAP
approach. Separating the logic that is specific to the authentication approach from
the rest of the application login process allows us to easily switch between such
implementations. The identity class provides this separation.

User Management and Authentication

[142]

When we initially created our application, a user identity class file, namely
protected/components/UserIdentity.php, was generated for us. It extends
the Yii framework class, CUserIdentity, which is a base class for authentication
implementations that uses a username and password. Let's take a closer look at the
code that was generated for this class:

<?php
/**
 * UserIdentity represents the data needed to identity a user.
 * It contains the authentication method that checks if the provided
 * data can identify the user.
 */
class UserIdentity extends CUserIdentity
{
 /**
 * Authenticates a user.
 * The example implementation makes sure if the username and
password
 * are both 'demo'.
 * In practical applications, this should be changed to authenticate
 * against some persistent user identity storage (e.g. database).
 * @return boolean whether authentication succeeds.
 */
 public function authenticate()
 {
 $users=array(
 // username => password
 'demo'=>'demo',
 'admin'=>'admin',
);
 if(!isset($users[$this->username]))
 $this->errorCode=self::ERROR_USERNAME_INVALID;
 else if($users[$this->username]!==$this->password)
 $this->errorCode=self::ERROR_PASSWORD_INVALID;
 else
 $this->errorCode=self::ERROR_NONE;
 return !$this->errorCode;
 }
}

Chapter 6

[143]

The bulk of the work in defining an identity class is the implementation of the
authenticate() method. This is where we place the code that is specific to
the authentication approach. This implementation simply uses the hardcoded
username/password values of demo/demo and admin/admin. It checks these values
against the username and password class properties (properties defined in the parent
class, CUserIdentity) and if they don't match, it will set and return an appropriate
error code.

In order to better understand how these pieces fit into the entire end-to-end
authentication process, let's walk through the logic starting with the login form. If
we navigate to the login page, http://localhost/trackstar/index.php?r=site/
login, we see a simple form allowing the input of a username, a password,
and an optional checkbox for the Remember Me Next Time functionality that
we discussed before. Submitting this form invokes the logic contained in the
SiteController::actionLogin() method. The following sequence diagram
depicts the class interaction that occurs during a successful login from the time the
form is submitted.

User Management and Authentication

[144]

The process starts with setting the class attributes on the form model class,
LoginForm, to the form values submitted. The LoginForm->validate() method is
then called, which validates these attribute values based on the rules defined in the
rules() method. This method is defined as follows:

public function rules()
{
 return array(
 // username and password are required
 array('username, password', 'required'),
 // rememberMe needs to be a boolean
 array('rememberMe', 'boolean'),
 // password needs to be authenticated
 array('password', 'authenticate'),
);
}

The last of these rules stipulates that the password attribute be validated using
the custom method authenticate(), which is also defined in the LoginForm
class as follows:

/**
 * Authenticates the password.
 * This is the 'authenticate' validator as declared in rules().
 */
 public function authenticate($attribute,$params)
 {
 $this->_identity=new UserIdentity($this->username,$this-
>password);
 if(!$this->_identity->authenticate())
 $this->addError('password','Incorrect username or password.');
 }

Continuing to follow the sequence diagram, the password validation within
LoginForm calls the authenticate() method within the same class. This method
creates a new instance of the authentication identity class being used, in this case it
is /protected/components/UserIdentity.php, and then calls its authenticate()
method. This method, UserIdentity::authenticate() is as follows:

/**
 * Authenticates a user.
 * The example implementation makes sure if the username and
password
 * are both 'demo'.
 * In practical applications, this should be changed to authenticate
 * against some persistent user identity storage (e.g. database).

Chapter 6

[145]

 * @return boolean whether authentication succeeds.
 */
 public function authenticate()
 {
 $users=array(
 // username => password
 'demo'=>'demo',
 'admin'=>'admin',
);
 if(!isset($users[$this->username]))
 $this->errorCode=self::ERROR_USERNAME_INVALID;
 else if($users[$this->username]!==$this->password)
 $this->errorCode=self::ERROR_PASSWORD_INVALID;
 else
 $this->errorCode=self::ERROR_NONE;
 return !$this->errorCode;
 }

This is implemented to use the username and password to perform its authentication.
In this implementation, as long as the username/password combination is either
demo/demo or admin/admin, this method will return true. Since we are walking
through a successful log in, the authentication succeeds and then the SiteController
calls the LoginForm::login() method, which looks as follows:

/**
 * Logs in the user using the given username and password in the
model.
 * @return boolean whether login is successful
 */
 public function login()
 {
 if($this->_identity===null)
 {
 $this->_identity=new UserIdentity($this->username,$this-
>password);
 $this->_identity->authenticate();
 }
 if($this->_identity->errorCode===UserIdentity::ERROR_NONE)
 {
 $duration=$this->rememberMe ? 3600*24*30 : 0; // 30 days
 Yii::app()->user->login($this->_identity,$duration);
 return true;
 }
 else
 return false;
 }

User Management and Authentication

[146]

And we can see that this in turn calls Yii::app()->user->login (that is
CWebUser::login()), passing in the CUserIdentity class instance as well as a
duration to which to set the cookie for autologin.

By default, the web application is configured to use the Yii framework class,
CWebuser as the user application component. Its login() method takes in an
identity class and an optional duration parameter used to set the time to live on
the browser cookie. In the previous code, we see that this is set to 30 days if the
Remember Me checkbox was checked when the form was submitted. If you do not
pass in a duration, it is set to zero. A value of zero will result in no cookie being
created at all.

The CWebUser::login() method takes the information contained in the identity
class and saves it in persistent storage for the duration of the user session. By default,
this storage is the PHP session storage.

After all of this is completed, the login() method on LoginForm that was initially
called by our controller class returns true, which indicates a successful log in. The
controller class then redirects to the URL value in Yii::app()->user->returnUrl.
You can set this on certain pages throughout the application if you want to ensure
that the user be redirected back to their previous page, that is wherever they were in
the application before they decided (or were forced) to log in. This value defaults to
the application entry URL.

Changing the authenticate implementation
Now that we understand the entire authentication process, we can easily see where
we need to make the change to use our tbl_user table to validate the username
and password credentials submitted via the login form. We can simply alter the
authenticate() method in the user identity class to verify the existence of a
matching row with the supplied username and password values. Since, at the
moment, there is nothing else in our UserIdentity.php class except the authenticate
method, let's completely replace the contents of this file with the following code:

<?php

/**
 * UserIdentity represents the data needed to identity a user.
 * It contains the authentication method that checks if the provided
 * data can identity the user.
 */

class UserIdentity extends CUserIdentity
{

Chapter 6

[147]

 private $_id;

 public function authenticate()
 {
 $user=User::model()->find('LOWER(username)=?',array(strtolower($th
is->username)));
 if($user===null)
 $this->errorCode=self::ERROR_USERNAME_INVALID;
 else if(!$user->validatePassword($this->password))
 $this->errorCode=self::ERROR_PASSWORD_INVALID;
 else
 {
 $this->_id=$user->id;
 $this->username=$user->username;
$this->setState('lastLogin', date("m/d/y g:i A", strtotime($user-
>last_login_time)));
 $user->saveAttributes(array(
 'last_login_time'=>date("Y-m-d H:i:s", time()),
));
 $this->errorCode=self::ERROR_NONE;
 }
 return $this->errorCode==self::ERROR_NONE;
 }

 public function getId()
 {
 return $this->_id;
 }
}

And since we are going to have our User model class do the actual password
validation, we also need to add the following method to our User model class:

/**
 * Checks if the given password is correct.
 * @param string the password to be validated
 * @return boolean whether the password is valid
 */
 public function validatePassword($password)
 {
 return $this->hashPassword($password)===$this->password;
 }

User Management and Authentication

[148]

There are a few things going on with this new code that should be pointed out.
First, it is now attempting to retrieve a row from the tbl_user table, by way of
creating a new User model AR class instance, where the username is the same as the
UserIdentity class's attribute value (remember that this is set to be the value from
the login form). Since we enforced the uniqueness of the username when creating a
new user, this should find at most one matching row. If it does not find a matching
row, an error message is set to indicate the username is incorrect. If a matching row
is found, it compares the passwords by calling our new User::validatePassword()
method. If the password fails the validation, it sets an error message to indicate an
incorrect password.

If the authentication is successful, a couple of other things happen before the method
returns. First, we have set a new attribute on the UserIdentity class for the user
ID. The default implementation in the parent class is to return the username for the
ID. Since we are using a database, and have a numeric primary key as our unique
user identifier, we want to make sure this is what is set and returned throughout the
application when the user ID is requested. For example, when the code Yii::app()-
>user->id is executed, we want to make sure that the unique ID from the database
is returned, not the username.

Extending user attributes
The second thing happening here is the setting of an attribute on the user identity to
be the last login time returned from the database, and then also updating the last_
login_time field in the database to be the current time. The specific code from the
previous snippet doing this is as follows:

$this->setState('lastLogin', date("m/d/y g:i A", strtotime($user-
>last_login_time)));
$user->saveAttributes(array(
 'last_login_time'=>date("Y-m-d H:i:s", time()),
));

The user application component, CWebUser, derives its user attributes from
the explicit ID and name attributes defined in the identity class, and then from
name=>value pairs set in an array called the identity states. These are the extra
user values that can be persisted throughout a user's session. As an example of this,
we are setting the attribute named lastLogin to be the value of the last_login_
time field in the database. This way, at any place throughout the application, this
attribute can be accessed via:

Yii::app()->user->lastLogin;

Chapter 6

[149]

The reason we take a different approach when storing the last login time versus the
ID is that ID just happens to be an explicitly defined property on the CUserIdentity
class. So, other than name and ID, all other user attributes that need to be persisted
throughout the session can be set in a similar manner.

When cookie-based authentication is enabled (by setting
CWebUser::allowAutoLogin to be true), the persistent
information will be stored in the cookie. Therefore, you should
not store sensitive information (for example, your password) in
the same manner as we have stored the user's last login time.

With these changes in place, you will now need to provide a correct username and
password combination for a user defined in the tbl_user table in the database.
Using demo/demo or admin/admin will, of course, no longer work. Give it a try. You
should be able to login as any one of the users you created earlier in this chapter. If
you followed along and have the same user data as we do, the credentials Username:
User One, Password: test1 should work.

Now that we have altered the login process to authenticate against
the database, we won't be able to access the delete functionality for
any of our project, issue, or user entities. The reason for this is that
there are authorization checks in place to ensure that the user is an
admin prior to allowing access. Currently, none of our database users
have been configured to be authorized administrators. Don't worry,
authorization is the focus of the next chapter, so we will be able to
access that functionality again very soon.

Displaying the last login time on the home
page
Now that we are updating the last login time in the database, and saving it to
persistent session storage when logging in, let's go ahead and display this time on
our welcome screen that a user will see after a successful log in. This will also help
make us feel better that all of this is working as expected.

User Management and Authentication

[150]

Open up the default view file that is responsible for displaying our home page
protected/views/site/index.php. Add the following highlighted lines of code
just below the welcome statement:

<h1>Welcome to <i><?php echo CHtml::encode(Yii::app()->name); ?></i></
h1>
<?php if(!Yii::app()->user->isGuest):?>
<p>
 You last logged in on <?php echo Yii::app()->user->lastLogin; ?>.
</p>
<?php endif;?>

And since we are in there, let's go ahead and remove all of the other autogenerated
help text, which is everything else below the lines we just added. Once you save and
log in again, you should see something similar to the following screenshot, which
displays the welcome message followed by a formatted time indicating your last
successful log in:

Chapter 6

[151]

Summary
This chapter was the first of two where we focus on user management,
authentication, and authorization. We created the ability to manage CRUD
operations for application users, making many adjustments to the new user creation
process along the way. We added a new base class for all of our active record classes
so that we can easily manage our audit history table columns that are present on all
of our tables. We also updated our code to properly manage the user's last login time
that we are storing in the database. In doing so, we learned about tapping into the
CActiveRecord validation workflow to allow for prevalidation/postvalidation and
presaving/postsaving processing.

We then focused on understanding the Yii authentication model in order to enhance
it to meet our application requirements so that the user credentials are validated
against the values stored in the database.

Now that we have covered authentication, we can turn our focus to the second part
of Yii's auth-and-auth framework, authorization. This is the focus of the next chapter.

User Access Control
User-based web applications, like our TrackStar application, typically need to
control access to certain functionality based on who is making the request. When we
speak of user access control, we are referring, at a high level, to some questions the
application needs to ask when requests are being made. These questions are:

•	 Who is making the request?
•	 Does that user have the appropriate permission to access the requested

functionality?

The answers to these questions help the application respond appropriately.

The work completed in Chapter 6, User Management and Authorization provides our
application with the ability to answer the first of these questions. The application
now allows users to establish their own authentication credentials and validates the
username and password when a user logs in. After a successful login, the application
knows exactly who is making subsequent requests.

In this chapter, we will focus on helping the application answer the second question.
Once the user has provided appropriate identification, the application needs a way to
determine if they also have permission to perform the requested action. We'll extend
our basic authorization model by taking advantage of Yii's user access control features.
Yii provides both a simple access control filter as well as a more sophisticated Role
Based Access Control (RBAC) implementation as a means to help us address our user
authorization requirements. We'll take a closer look at both of these as we work to
implement the user access requirements for the TrackStar application.

User Access Control

[154]

Feature planning
When we first introduced our TrackStar application back in Chapter 3, The TrackStar
Application, we mentioned the application has two high-level user states, namely
anonymous and authenticated. This simply makes a distinction between a user
that has successfully logged in (authenticated), and one who has not (anonymous).
We also introduced the idea of authenticated users having different roles within a
project. Within a specific project, a user can be in one of the following three roles:

•	 A project owner has all administrative access to the project
•	 A project member has some administrative access, but has more limited

access compared to the project owner
•	 A project reader has read-only access. Such users cannot change the content of

a project

The focus of this chapter is to implement an approach to manage the access control
granted to application users. We need a way to create and manage our roles and
permissions, assign them to users, and enforce the access control rules we want for
each user role.

In order to achieve the goals outlined earlier, we will focus on the following
throughout this chapter:

•	 Implement a strategy to force the user to log in before gaining access to any
project or issue-related functionality

•	 Create user roles and associate those roles with a specific permission structure
•	 Implement the ability to assign users to roles (and their associated permissions)
•	 Ensure our role and permission structure exists on a per-project basis (that is,

allow users to have different permissions within different projects)
•	 Implement the ability to associate users to projects and at the same time to

roles within that project
•	 Implement the necessary authorization access checking throughout the

application to appropriately grant or deny access to the application user
based on their permissions

Luckily, Yii comes with a lot of built-in functionality to help us implement these
requirements. So, let's get started.

Chapter 7

[155]

Access control filter
We first introduced filters back in Chapter 5, Managing Issues when we enforced a
valid project context before allowing issue functionality to be used. If you recall, we
added a class method filter filterProjectContext() to the IssueController class
as a way to ensure we had a valid project context before we performed any actions
on an Issue entity. Yii provides a similar approach for handling simple access control
on an action-by-action basis within controllers.

The Yii framework provides a filter called accessControl. This filter can be directly
used in controller classes to provide an authorization scheme to verify whether
or not a user can access a specific controller action. In fact, the astute reader will
remember that when we were implementing the projectContext filter back in
Chapter 5, Managing Issues, we noticed that this access control filter was already
included in the filters list for both our IssueController and ProjectController
classes, as follows:

/**
 * @return array action filters
 */
public function filters()
{
return array(
'accessControl', // perform access control for CRUD operations
);
}

This was included in the autogenerated code produced by using the Gii CRUD code
generator tool. The autogenerated code also overrides the accessRules() method,
which is necessary in order to use the access control filter. It is in this method where
you define the actual authorization rules.

The default implementation for our CRUD actions is set up to allow anyone to view
a list of existing issues and projects. However, it restricts the access of creating and
updating to authenticated users, and further restricts the delete action to a special
admin user. You might remember that when we first implemented CRUD operations
on projects, we had to log in before we were able to create new ones. The same was
true when dealing with issues and again with users. The mechanism controlling this
authorization and access is exactly this access control filter. Let's take a closer look at
this implementation within the ProjectController.php class file.

User Access Control

[156]

There are two methods relevant to access control in the ProjectController class:
filters() and accessRules(). The filters() method configures the filter:

/**
 * @return array action filters
 */
public function filters()
{
return array(
'accessControl', // perform access control for CRUD operations
);
}

And the accessRules() method, which is used to define the authorization rules
used by the access filter, is shown as follows:

/**
* Specifies the access control rules.
* This method is used by the 'accessControl' filter.
* @return array access control rules
*/
public function accessRules()
{
return array(
array('allow', // allow all users to perform 'index' and 'view'
actions
'actions'=>array('index','view'),
'users'=>array('*'),
),
array('allow', // allow authenticated user to perform 'create' and
'update' actions
'actions'=>array('create','update'),
'users'=>array('@'),
),
array('allow', // allow admin user to perform 'admin' and 'delete'
actions
'actions'=>array('admin','delete'),
'users'=>array('admin'),
),
array('deny', // deny all users
'users'=>array('*'),
),
);
}

Chapter 7

[157]

The filters() method is already familiar to us. It is where we specify all the filters
to be used in the controller class. In this case, we have only one, accessControl,
which refers to a filter provided by the Yii framework. This filter uses the other
method, accessRules(), which defines the rules that drive the access restrictions.

In the accessRules() method, there are four rules specified. Each rule is
represented as an array. The first element of the array is either allow or deny. These
indicate the granting or denying of access respectively. The rest of the array consists
of name=>value pairs specifying the remaining parameters of the rule.

Let's look at the first rule defined earlier:

array('allow', // allow all users to perform 'index' and 'view'
actions
'actions'=>array('index','view'),
'users'=>array('*'),
),

This rule allows the actionIndex()and actionView() controller actions to be
executed by any user. The asterisk (*), used in the value for the 'users' element, is a
special character used to specify any user (anonymous, authenticated, or otherwise).

Now let's look at the second rule defined:

array('allow', // allow authenticated user to perform 'create' and
'update' actions
'actions'=>array('create','update'),
'users'=>array('@'),
),

This allows for any authenticated user to access the actionCreate() and
actionUpdate() controller actions. The @ special character is a way to specify any
authenticated user.

The third rule is defined in the following code snippet:

array('allow', // allow admin user to perform 'admin' and 'delete'
actions
'actions'=>array('admin','delete'),
'users'=>array('admin'),
),

This rule specifies that a specific user, named admin, is allowed access to the
actionAdmin() and actionDelete() controller actions.

User Access Control

[158]

Finally, let's have a closer look at the fourth rule:

array('deny', // deny all users
'users'=>array('*'),
),

This rule denies all users access to all controller actions. We'll elaborate on this one a
little more in a minute.

Access rules can be defined using a number of context parameters. The rules
mentioned earlier are specifying actions and users to create the rule context, but
there are several other parameters you can use. A few of these are given as follows:

•	 Controllers: Specifies an array of controller IDs to which the rule
should apply.

•	 Roles: Specifies a list of authorization items (roles, operations, and
permissions) to which the rule applies. This makes use of the RBAC feature
we will be discussing in the next section.

•	 IPs: Specifies a list of client IP addresses to which this rule applies.
•	 Verbs: Specifies which HTTP request types (GET, POST, and so on) apply to

this rule.
•	 Expression: Specifies a PHP expression whose value indicates whether or not

the rule should be applied.
•	 Actions: Specifies the action method, by use of the corresponding action ID,

to which the rule should match.
•	 Users: Specifies the users to which the rule should apply. The current

application user's name attribute is used for matching. The following three
special characters can also be used here:

1.	 *: any user
2.	 ?: anonymous users
3.	 @: authenticated users

If no users are specified, the rule will apply to all users.

Chapter 7

[159]

The access rules are evaluated one by one in the order they are specified. The first
rule that matches the current pattern determines the authorization result. If this rule
is an allow rule, the action can be executed; if it is a deny rule, the action cannot be
executed; if none of the rules match the context, the action can still be executed. It is
for this reason that the fourth rule mentioned earlier is defined. If we did not define
a rule that denied all actions to all users at the end of our rules list, then we would
not achieve our desired access restrictions. As an example, take the second rule. It
specifies that authenticated users are allowed access to the actioncreate() and
actionUpdate() actions. However, it does not stipulate that anonymous users be
denied access. It says nothing about anonymous users. The fourth rule mentioned
earlier ensures that all other requests that do not match one of the first three specific
rules be denied access.

With this already in place, altering our application to deny access to all project,
issue, and user related functionality for anonymous users is a snap. All we have
to do is change the special character "*" of the users array value to the "@" special
character. This will only allow authenticated users to access the actionIndex()
and actionView() controller actions. All other actions are already restricted to
authenticated users.

Now, we could make this change, three times, in each of our project, issue, and user
controller class files. However, we have a base controller class from which each of
these extend, namely the Controller class in the file protected/components/
Controller.php. So, we can add our CRUD access rules in this one file, and
then remove it from each of the child classes. We can also take advantage of the
controllers context parameter when defining our rules so that it will only apply to
these three controllers.

First, let's add the necessary method to our base controller class. Open up
protected/components/Controller.php and add the following method:

/**
 * Specifies the access control rules.
 * This method is used by the 'accessControl' filter.
 * @return array access control rules
 */
public function accessRules()
{
return array(
array('allow', // allow all users to perform 'index' and 'view'
actions
'controllers'=>array('issue','project','user'),
'actions'=>array('index','view'),
'users'=>array('@'),
),
array('allow', // allow authenticated user to perform 'create' and
'update' actions

User Access Control

[160]

'controllers'=>array('issue','project','user'),
'actions'=>array('create','update'),
'users'=>array('@'),
),
array('allow', // allow admin user to perform 'admin' and 'delete'
actions
'controllers'=>array('issue','project','user'),
'actions'=>array('admin','delete'),
'users'=>array('admin'),
),
array('deny', // deny all users
'controllers'=>array('issue','project','user'),
'users'=>array('*'),
),
);
}

The highlighted code in the previous code snippet shows the changes we made. We
have added the controllers parameter to each of our rules and changed the users
for the index and view actions to only allow authenticated users.

Now we can remove this method from each of the specified controllers. Open
up all three of the ProjectController.php, IssueController.php, and
UserController.php files and remove their respective accessRules() methods.

After making these changes, the application will require a login prior to accessing
any of our project, issue, or user functionality. We still allow anonymous user access to
the SiteController class action methods, which we kept because this is where our
login actions are located. We obviously have to be able to access the login page if we
are not already logged in.

Role based access control
Now that we have used the simple access control filter to limit access to
authenticated users, we need to turn focus to meeting some more specific access
control needs of our application. As we mentioned, users will play certain roles
within a project. The project will have users of type owner, who can be thought of
as project administrators. They will be granted all access to manipulate the project.
The project will also have users of type member, who will be granted some access to
project functionality, but a proper subset of what owners are able to perform. Finally,
the project can have users of type reader, who are only able to view project-related
content and not alter it in any way. To achieve this type of access control based
on the role of a user, we turn to the Role Based Access Control feature of Yii, also
referred to more simply as RBAC.

Chapter 7

[161]

RBAC is an established approach in computer systems security to managing the
access permissions of authenticated users. In short, the RBAC approach defines
roles within an application. Permissions to perform certain operations are also
defined and then associated with roles. Users are then assigned to a role and
through the role association, acquire the permissions defined for that role. There is
plenty of documentation available for the curious reader about the general RBAC
concept and approach. Wikipedia, for example, http://en.wikipedia.org/wiki/
Role-based_access_control. We'll focus on the specifics of Yii's implementation
of the RBAC approach.

Yii's implementation of RBAC is simple, elegant, and powerful. At the foundation of
RBAC in Yii is the idea of the authorization item. The authorization item is simply
a permission to do things in the application. These permissions can be categorized
as roles, tasks, or operations, and, as such, form a permission hierarchy. Roles can
consist of tasks (or other roles), tasks can consist of operations (or other tasks), and
operations are the most granular permission level.

For example, in our TrackStar application, we need a role of type owner. So, we would
create an authorization item of type role and call it "owner". This role could then consist
of tasks such as a "user management" and "issue management". These tasks could
then further consist of the atomic operations that make up these tasks. Continuing the
example, the "user management" task could consist of the operations "create new user",
"edit user", and "delete user". This hierarchy allows for inheritance of these permissions
so that, given this example, if a user is assigned to the owner role, they inherit the
permission to perform create, edit, and delete operations on the user.

Typically in RBAC, you assign a user to one or more roles and the user inherits the
permissions that have been assigned to those roles. This holds true for RBAC in Yii
as well. However, in Yii, we can associate users to any authorization item, not just
the ones of type role. This allows us the flexibility to associate a specific permission
to a user at any level of granularity. If we only want to grant the "delete user"
operation to a specific user, and not give them all the access that an owner role
would have, we can simply associate the user to this atomic operation. This makes
RBAC in Yii very flexible.

http://en.wikipedia.org/wiki/Role-based_access_control

User Access Control

[162]

Configuring the authorization manager
Before we can establish an authorization hierarchy, assign users to roles, and
perform access permission checking, we need to configure the authorization
manager application component, authManager. This component is responsible for
storing the permission data and managing the relationships between permissions.
It also provides the methods to check whether or not a user has access to perform
a particular operation. Yii provides two types of authorization managers
CPhpAuthManager and CDbAuthManager. CPhpAuthManager uses a PHP script file to
store the authorization data. CDbAuthManager, as you might have guessed, stores the
authorization data in a database. The authManager is configured as an application
component. Configuring the authorization manager consists simply of specifying
which of these two types to use and then setting its initial class property values.

We'll use the database implementation for our application. To make this
configuration, open up the main configuration file, protected/config/main.php,
and add the following to the application components array:

// application components
'components'=>array(
…
'authManager'=>array(
'class'=>'CDbAuthManager',
'connectionID'=>'db',
),

This establishes a new application component named authManager, specifies the
class type to be CDbAuthManager, and sets the connectionID class property to
be our database connection component. Now we can access this anywhere in our
application using Yii::app()->authManager.

Creating the RBAC database tables
As mentioned, the CDbAuthManager class uses database tables to store the permission
data. It expects a specific schema. That schema is identified in the framework file
YiiRoot/framework/web/auth/schema.sql. It is a simple, yet elegant, schema
consisting of three tables, AuthItem, AuthItemChild, and AuthAssignment.

Chapter 7

[163]

The AuthItem table holds the information defining the authorization item that
is the role, task, or operation. The AuthItemChild table houses the parent/
child relationships that form our hierarchy of authorization items. Finally, the
AuthAssignment table is an association table that holds the association between a
user and an authorization item.

So, we need to add this table structure to our database. Just as we have done
previously, we'll use database migrations to make these changes. From the command
line, navigate to the /protected directory of the TrackStar application, and create
the migration:

$ cd /Webroot/trackstar/protected

$./yiic migrate create create_rbac_tables

This will create a new migration file under the protected/migrations/
directory named according to the migration file naming conventions (for example,
m120619_015239_create_rbac_tables.php). Implement the up() and down()
migration methods as follows:

public function up()
{
//create the auth item table
$this->createTable('tbl_auth_item', array(
'name' =>'varchar(64) NOT NULL',
'type' =>'integer NOT NULL',
'description' =>'text',
'bizrule' =>'text',
'data' =>'text',
'PRIMARY KEY (`name`)',
), 'ENGINE=InnoDB');

//create the auth item child table
$this->createTable('tbl_auth_item_child', array(
'parent' =>'varchar(64) NOT NULL',
'child' =>'varchar(64) NOT NULL',
'PRIMARY KEY (`parent`,`child`)',
), 'ENGINE=InnoDB');

//the tbl_auth_item_child.parent is a reference to tbl_auth_item.name
$this->addForeignKey("fk_auth_item_child_parent", "tbl_auth_item_
child", "parent", "tbl_auth_item", "name", "CASCADE", "CASCADE");

//the tbl_auth_item_child.child is a reference to tbl_auth_item.name

User Access Control

[164]

$this->addForeignKey("fk_auth_item_child_child", "tbl_auth_item_
child", "child", "tbl_auth_item", "name", "CASCADE", "CASCADE");

//create the auth assignment table
$this->createTable('tbl_auth_assignment', array(
'itemname' =>'varchar(64) NOT NULL',
'userid' =>'int(11) NOT NULL',
'bizrule' =>'text',
'data' =>'text',
'PRIMARY KEY (`itemname`,`userid`)',
), 'ENGINE=InnoDB');

//the tbl_auth_assignment.itemname is a reference
//to tbl_auth_item.name
$this->addForeignKey(
"fk_auth_assignment_itemname",
"tbl_auth_assignment",
"itemname",
"tbl_auth_item",
"name",
"CASCADE",
"CASCADE"
);

//the tbl_auth_assignment.userid is a reference
//to tbl_user.id
$this->addForeignKey(
"fk_auth_assignment_userid",
"tbl_auth_assignment",
"userid",
"tbl_user",
"id",
"CASCADE",
"CASCADE"
);
}

public function down()
{
$this->truncateTable('tbl_auth_assignment');

Chapter 7

[165]

$this->truncateTable('tbl_auth_item_child');
$this->truncateTable('tbl_auth_item');
$this->dropTable('tbl_auth_assignment');
$this->dropTable('tbl_auth_item_child');
$this->dropTable('tbl_auth_item');
}

After you save these changes, run the migration to create the needed structure:

$./yiic migrate

Once the necessary structure is created, you will see a message Migrated up
successfully on the screen.

Since we stayed with our database table naming conventions, we need to alter our
authManager component configuration to specify our specific table names. Open
up /protected/config/main.php, and add the table name specification to the
authManager component:

// application components
'components'=>array(
…
'authManager'=>array(
'class'=>'CDbAuthManager',
'connectionID'=>'db',
'itemTable' =>'tbl_auth_item',
'itemChildTable' =>'tbl_auth_item_child',
'assignmentTable' =>'tbl_auth_assignment',
),

Now the authorization manager component will know exactly which tables we want
it to use to manage our authorization structure.

If you need a reminder on how to use Yii database migrations,
refer back to Chapter 4, Project CRUD where this concept was
first introduced.

User Access Control

[166]

Creating the RBAC authorization hierarchy
After adding these tables to our trackstar database, we need to populate them
with our roles and permissions. We will do this using the API provided by the
authmanager component. To keep things simple, we are going to only define roles
and basic operations. We will not set up any formal RBAC tasks for now. The
following diagram displays the basic hierarchy we wish to define:

The diagram shows the top-down inheritance. So, owners have all the permissions
listed in the Owner box, plus they inherit all the permissions from both the member
and reader roles. Likewise, member inherits permissions from reader. What we now
need to do is establish this permission hierarchy in the application. As previously
mentioned, one way to do this is to write code to utilize the authManager API.

Chapter 7

[167]

As an example of using the API, the following code creates a new role and a new
operation, and then adds the relationship between the role and the permission:

$auth=Yii::app()->authManager;
$role=$auth->createRole('owner');
$auth->createOperation('createProject','create a new project');
$role->addChild('createProject');

Walking through this code, we first get an instance of the authManager. We then
use its createRole(), createOperation(), and addChild() API methods to create
a new owner role, and a new operation named createProject. We then add the
permission to the owner role. This only demonstrates the creation of a small part of
our needed hierarchy; all of the remaining relationships we outlined in the previous
diagram need to be created in a similar manner.

We could create a new database migration, and place our code there in order to
populate our permission hierarchy. However, we are going to take a different
approach in order to demonstrate using console commands in your Yii applications.
We are going to write a simple shell command to be executed at the command line.
This will extend the command options of the yiic command-line tool we used to
create our initial application.

Writing a console application command
We introduced the yiic command-line tool back in Chapter 2, Getting Started, when
we created a new "Hello, World!" application, and again in Chapter 4, Project CRUD
when we used it to initially create the structure of our TrackStar web application. We
have continued to use it when creating and running our database migrations.

The yiic tool is a console application in Yii that executes tasks in the form of
commands. We have used the webapp command to create new applications, and the
migrate command to create new migration files and execute our database migrations.
Console applications in Yii are easily extended by writing custom commands, and this
is exactly what we are going to do. We are going to extend the yiic command tool set
by writing a new command-line tool to allow us to build our RBAC authorization.

Writing a new command for a console application is quite simple. A command is
simply a class that extends from CConsoleCommand. It works similarly to a controller
class in that it will parse the input command-line options and dispatch the request
to the specified action within the command class, the default being actionIndex().
The name of the class should be exactly the same as the desired command name,
followed by "Command". In our case, our command will simply be "Rbac", so we'll
name our class RbacCommand. Lastly, in order to make this command available to the
yiic console application, we need to save our class into the /protected/commands/
directory, which is the default location for console commands.

User Access Control

[168]

So, create a new file /protected/commands/RbacCommand.php. The contents for this
file are too long to be included, but can be easily obtained from the downloadable
code for this chapter, or from gist.github.com/jeffwinesett. The individual
snippet for this is available at https://gist.github.com/3779677.

The comments in the downloadable code should help tell the story of what is
happening here. We override the base class implementation of getHelp()to add
an additional description line. We'll show how to display the help in a minute.
All of the real action happens in the two actions we added, actionIndex() and
actionDelete(). The former creates our RBAC hierarchy, and the latter removes it.
They both ensure the application has a vaild authManager application component
defined. Then both actions allow the user to have a last chance to cancel the request
before proceeding. If the user of this command indicates they want to continue,
the request will proceed. Both of our actions will proceed to clear all previously
entered data in the RBAC tables and the actionIndex() method will create a new
authorization hierarchy. The hierarchy that is created here is exactly the one we
discussed previously.

We can see that, even based on our fairly simple hierarchy, there is still a significant
amount of code needed. Typically, one would need to develop a more intuitive
Graphical User Interface (GUI) wrapped around these authorization manager APIs
to provide an easy interface to manage roles, tasks, and operations. The approach
we have taken here is a great solution for establishing a quick RBAC permission
structure, but not ideal for the long-term maintenance of a permission structure that
might change significantly.

In a real-world application, you will most likely need a different,
more interactive tool to help maintain the RBAC relationships. The Yii
extension library (http://www.yiiframework.com/extensions/)
does provide some packaged solutions for this.

Chapter 7

[169]

With this file in place, if we now ask the yiic tool for help, we'll see our new
command as one of the available options:

Our rbac does show up in the list. However, before we can try to execute it, we
need to configure the authManager for our console application. As you may recall,
when running console applications, a different configuration file is loaded, namely
/protected/config/console.php. We need to add the same authManager
component to this file as we did previously to the main.php configuration file. Open
up console.php and add the following to the components list:

'authManager'=>array(
'class'=>'CDbAuthManager',
'connectionID'=>'db',
'itemTable' =>'tbl_auth_item',
'itemChildTable' =>'tbl_auth_item_child',
'assignmentTable' =>'tbl_auth_assignment',
),

With this in place, we can now try out our new command:

User Access Control

[170]

This is exactly the help text that we added to our getHelp() method in our
command class. You can certainly be more verbose and add more detail as desired.
Let's actually run the command. Since actionIndex() is the default, we don't have
to specify the action:

Our command has completed and we have added the appropriate data to our new
database tables to generate our authorization hierarchy.

Since we also added an actionDelete() method to remove our hierarchy, you can
try that one out as well:

$./yiic rbac delete

Once you are done trying these out, make sure you run the command again to add
the hierarchy, as we need it to be in place as we continue.

Assigning users to roles
Everything we have done thus far establishes an authorization hierarchy, but it does
not yet assign permissions to users. We accomplish this by assigning users to one
of the three roles we created, owner, member, or reader. For example, if we wanted to
associate the user whose unique user ID is 1 with the member role, we would execute
the following:

$auth=Yii::app()->authManager;

$auth->assign('member',1);

Once these relationships are established, checking a user's access permission is a
simple matter. We simply ask the application user component whether or not the
current user has the permission. For example, if we wanted to check whether or not the
current user is allowed to create a new issue, we could do so with the following syntax:

if(Yii::app()->user->checkAccess('createIssue'))
{
 //perform needed logic
}

Chapter 7

[171]

In this example, we assigned user ID 1 to the role of member and since in our
authorization hierarchy the member role inherits the createIssue permission,
this if() statement would evaluate to true, assuming we were logged in to the
application as user 1.

We will be adding this authorization assignment logic as part of the business logic
executed when adding a new member to a project. We'll be adding a new form that
allows us to add users to projects, and the ability to choose a role as part of the process.
But first we need to address one other aspect of how user roles need to be implemented
within this application, namely, they need to apply on a per-project basis.

Adding RBAC roles to users on a per-project
basis
We now have a basic RBAC authorization model in place, but these relationships
apply to the application as a whole. Our needs for the TrackStar application are
slightly more complex. We need to assign roles to users within the context of
projects, not just globally across the application. We need to allow users to be in
different roles, depending on the project. For example, a user may be in the reader
role of one project, a member of a second project, and an owner of some third project.
Users can be associated with many projects, and the role they are assigned needs to
be specific to the project.

The RBAC framework in Yii does not have anything built-in that we can take
advantage of to meet this requirement. The RBAC model is only intended to
establish relationships between roles and permissions. It does not know (nor should
it) anything about our TrackStar projects. In order to achieve this extra dimension
to our authorization hierarchy, we need to alter our database structure to contain
an association between a user, project, and role. If you recall from back in Chapter 5,
Managing Issues we have already created a table, tbl_project_user_assignment,
to hold the association between a user and a project. We can alter this table to also
contain the role assigned to the user within the project. We'll add a new migration to
alter our table:

$ cd /Webroot/trackstar/protected/

$./yiic migrate create add_role_to_tbl_project_user_assignment

User Access Control

[172]

Now open up the newly created migration file and implement the following up()
and down() methods:

public function up()
{
$this->addColumn('tbl_project_user_assignment', 'role',
'varchar(64)');
//the tbl_project_user_assignment.role is a reference
 //to tbl_auth_item.name
$this->addForeignKey('fk_project_user_role', 'tbl_project_user_
assignment', 'role', 'tbl_auth_item', 'name', 'CASCADE', 'CASCADE');
}

public function down()
{
$this->dropForeignKey('fk_project_user_role', 'tbl_project_user_
assignment');
$this->dropColumn('tbl_project_user_assignment', 'role');
}

Finally run the migration:

You will see the message Migrated up successfully at the end of the screen.

Now our table is set up to allow us to make the role association along with the
association between a user and a project.

Chapter 7

[173]

Adding RBAC business rules
While the database table shown earlier will hold the basic information to answer the
question as to whether a user is assigned to a role within the context of a particular
project, we still need our RBAC auth hierarchy to answer questions concerning
whether or not a user has permission to perform a certain functionality. Although the
RBAC model in Yii does not know about our TrackStar projects, it does have a very
powerful feature of which we can take advantage. When you create authorization
items or assign an item to a user, you can associate a snippet of PHP code that will be
executed during the Yii::app()->user->checkAccess() call. When defined, this
bit of code must return true before the user would be granted that permission.

One example of the usefulness of this feature is in the context of applications that
allow users to maintain personal profile information. Often in this case, the application
would like to ensure that a user has the permission to update only their own profile
information and no one else's. In this case we could create an authorization item called
"updateProfile", and then associate a business rule that checks if the current user's ID is
the same as the user ID associated with the profile information.

In our case, we are going to associate a business rule with the role assignment. When
we assign a user to a specific role, we will also associate a business rule that will
check the relationship within the context of the project. The checkAccess() method
also allows us to pass in an array of additional parameters for the business rule to
use to perform its logic. We'll use this to pass in the current project context so that
the business rule can call a method on the Project AR class in order to determine
whether or not the user is assigned to that role within that project.

The business rule we'll create will be slightly different for each role assignment.
For example, the one we'll use when assigning a user to the owner role will look
like the following:

$bizRule='return isset($params["project"]) && $params["project"]-
>isUserInRole("owner");';

The ones for the roles member and reader will be similar.

We will also have to pass in the project context when we call the checkAccess()
method. So now when checking if a user has access to, for example, the createIssue
operation, the code would look like the following:

//add the project AR instance to the input params
$params=array('project'=>$project);
//pass in the params to the checkAccess call
if(Yii::app()->user->checkAccess('createIssue',$params))
{
 //proceed with issue creation logic
}

User Access Control

[174]

In the previous code, the $project variable is the Project AR class instance
associated with the current project context (remember that almost all
functionality in our application occurs within the context of a project). This class
instance is what is used in the business rule. The business rule calls a method,
Project::isUserInRole(), in order to determine if the user is in the role for the
specific project.

Implementing the new project AR methods
Now that we have altered our database structure to house the relationship between
user, role, and project, we need to implement the required logic to manage and
verify the data in this table. We will be adding public methods to the project AR class
to handle adding and removing data from this table as well as verifying the existence
of rows.

We need to add the public method to the Project AR class that will take in a role
name and a user ID and create the association between role, user, and project. Open
up the protected/models/Project.php file and add the following method:

public function assignUser($userId, $role)
{
$command = Yii::app()->db->createCommand();
$command->insert('tbl_project_user_assignment', array(
'role'=>$role,
'user_id'=>$userId,
'project_id'=>$this->id,
));
}

Here we are using the Yii framework query builder approach to directly insert
into the database table, rather than using the active record approach. Since
tbl_project_user_assignement is just an association table, and does not
represent a main domain object of our model, it is sometimes easier to manage
the data in these types of tables in a more direct manner than using the active
record approach.

For more information on using Query Builder in Yii, visit:
http://www.yiiframework.com/doc/guide/1.1/en/
database.query-builder

We'll also need to be able to remove a user from a project, and in doing so, remove
the association between a user and the project. So, let's also add a method to do that.

http://www.yiiframework.com/doc/guide/1.1/en/database.query-builder
http://www.yiiframework.com/doc/guide/1.1/en/database.query-builder
http://www.yiiframework.com/doc/guide/1.1/en/database.query-builder

Chapter 7

[175]

Add the following method to the Project AR class:

public function removeUser($userId)
{
$command = Yii::app()->db->createCommand();
$command->delete(
'tbl_project_user_assignment',
'user_id=:userId AND project_id=:projectId',
array(':userId'=>$userId,':projectId'=>$this->id));
}

This simply deletes the row from the table that houses the association between the
role, the user, and the project.

We have now implemented the methods for adding and removing our associations.
We need to add functionality to determine whether or not a given user is associated
with a role within the project. We will also add this as a public method to our
Project AR class.

Add the following method to the bottom of the Project AR model class:

public function allowCurrentUser($role)
{
$sql = "SELECT * FROM tbl_project_user_assignment WHERE project_
id=:projectId AND user_id=:userId AND role=:role";
$command = Yii::app()->db->createCommand($sql);
$command->bindValue(":projectId", $this->id, PDO::PARAM_INT);
$command->bindValue(":userId", Yii::app()->user->getId(), PDO::PARAM_
INT);
$command->bindValue(":role", $role, PDO::PARAM_STR);
return $command->execute()==1;
}

This method is showing how to execute the SQL directly, rather than using the query
builder. The query builder is very useful, but for simple queries, it is sometimes
easier to just execute the SQL directly, utilizing Yii's Data Access Objects (DAO).

For more information on Yii's Data Access Objects and directly
executing SQL in Yii, see:
http://www.yiiframework.com/doc/guide/1.1/en/
database.dao

User Access Control

[176]

Adding users to projects
Now we need to put all of this together. In Chapter 6, User Management and
Authorization we added the ability to create new users of the application. However,
we do not yet have a way to assign users to specific projects, and further, assign
them to roles within these projects. Now that we have our RBAC approach in place,
we need to build this new functionality.

The implementation of this functionality involves several coding changes. However,
we have provided similar examples of the type of changes needed, and have covered
all of the related concepts when implementing functionality in previous chapters.
Consequently, we will move pretty quickly through this, and pause only briefly to
highlight just a few things we have not yet seen. At this point, the reader should be
able to make all of these changes without much help, and is encouraged to do so as a
hands-on exercise. To further encourage this exercise, we'll first list everything we are
going to do to fulfill this new feature requirement. You can then close the book and try
some of these out yourself before looking further down at our implementation.

To achieve this goal we will perform the following:

1.	 Add a public static method called getUserRoleOptions() to the
Project model class that returns a valid list of role options using the auth
manager's getRoles() method. We will use this to populate a roles selection
drop-down field in the form, so that we can select the user role when adding
a new user to a project.

2.	 Add a new public method called isUserInProject($user) to the Project
model class to determine if a user is already associated with a project. We
will use this in our validation rules upon form submission so that we don't
attempt to add a duplicate user to a project.

3.	 Add a new form model class called ProjectUserForm, extending from
CFormModel for a new input form model. Add to this form model class three
attributes, namely $username, $role, and $project. Also add validation
rules to ensure that both the username and the role are required input fields,
and that the username should further be validated via a custom verify()
class method.

Chapter 7

[177]

This verify method should attempt to create a new UserAR class instance
by finding a user matching the input username. If the attempt was
successful, it should continue to associate the user to a project using the
assignUser($userId, $role)method that we already added earlier.
We will also need to associate the user to the role in our RBAC hierarchy
implemented earlier in this chapter. If no user was found matching the
username, it needs to set and return an error. (If needed, review the
LoginForm::authenticate()method as an example of a custom validation
rule method.)

4.	 Add a new view file under views/project called adduser.php to display our
new form for adding users to projects. This form only needs two input fields,
username and role. The role should be a drop-down choice listing.

5.	 Add a new controller action method called actionAdduser() to the
ProjectController class and alter its accessRules() method to ensure it is
accessible by authenticated members. This new action method is responsible
for rendering the new view to display the form and handle the post back
when the form is submitted.

Again, we encourage the reader to attempt these changes on their own first. We list
our code changes in the following sections.

Altering the project model class
To the Project class, we add two new public methods, one of them static so it can be
called without the need for a specific class instance:

 /**
 * Returns an array of available roles in which a user can be placed
when being added to a project
 */
public static function getUserRoleOptions()
{
return CHtml::listData(Yii::app()->authManager->getRoles(), 'name',
'name');
}

/*
 * Determines whether or not a user is already part of a project
 */
public function isUserInProject($user)
{

User Access Control

[178]

$sql = "SELECT user_id FROM tbl_project_user_assignment WHERE project_
id=:projectId AND user_id=:userId";
$command = Yii::app()->db->createCommand($sql);
$command->bindValue(":projectId", $this->id, PDO::PARAM_INT);
$command->bindValue(":userId", $user->id, PDO::PARAM_INT);
return $command->execute()==1;
}

Adding the new form model class
Just as it was used in the approach for the login form, we are going to create a new
form model class as a central place to house our form input parameters and to
centralize the validation. This is a fairly simple class that extends from the Yii class
CFormModel and has attributes that map to our form input fields, as well as one to
hold the valid project context. We need the project context to be able to add users
to projects. The entire class is too long to list here, but can be easily obtained from
the downloadable code that accompanies this chapter. The standalone snippet is
available at https://gist.github.com/3779690.

In the following code snippet, we have listed just the parts we have not seen before:

class ProjectUserForm extends CFormModel
{
…
 public function assign()
{
if($this->_user instanceof User)
{
//assign the user, in the specified role, to the project
$this->project->assignUser($this->_user->id, $this->role);
//add the association, along with the RBAC biz rule, to our RBAC
hierarchy
 $auth = Yii::app()->authManager;
$bizRule='return isset($params["project"]) && $params["project"]-
>allowCurrentUser("'.$this->role.'");';
$auth->assign($this->role,$this->_user->id, $bizRule);
 return true;
}
 else
{
$this->addError('username','Error when attempting to assign this user
to the project.');
return false;
}
 }

Chapter 7

[179]

For simplicity, in the createUsernameList() method, we are
selecting all users from the database to use for the username list.
If there are a large number of users, this may result in suboptimal
performance. To optimize performance, you may need to filter and
limit this in cases where there are a large number of users.

The part of the downloadable code that we listed above is the assign() method
where we are adding a bizRule to the association between the user and role in RBAC:

$auth = Yii::app()->authManager;
$bizRule='return isset($params["project"]) && $params["project"]-
>isUserInRole("'.$this->role.'");';
$auth->assign($this->role,$user->id, $bizRule);

We create an instance of the Authmanager class that we used to establish the
assignment of the user to the role. However, before we make that assignment, we
create the business rule. The business rule uses the $params array by first checking
the existence of a project element in the array, and then calls the isUserInRole()
method on the project AR class, which is the value of that array element. We explicitly
pass in the role name to this method. We then call the AuthManager::assign()
method to make the association between the user and the role.

We have also added a simple public method, createUsernameList(), to return an
array of all the usernames in the database. We will use this array to populate the data
of one of Yii's UI widgets, CJuiAutoComplete, which we will use for the username
input form element. As its name suggests, as we type in the input form field, it will
provide choice suggestions based on the elements in this array.

Adding the new action method to the project
controller
We need a controller action to handle the initial request to display the form for
adding a new user to a project. We placed this in the ProjectController class and
named it actionAdduser(). The code for this is as follows:

 /**
 * Provides a form so that project administrators can
 * associate other users to the project
 */
public function actionAdduser($id)
{
 $project = $this->loadModel($id);
 if(!Yii::app()->user->checkAccess('createUser',
 array('project'=>$project)))

User Access Control

[180]

{
 throw new CHttpException(403,'You are not authorized to perform
 this action.');
}

 $form=new ProjectUserForm;
 // collect user input data
 if(isset($_POST['ProjectUserForm']))
 {
 $form->attributes=$_POST['ProjectUserForm'];
 $form->project = $project;
 // validate user input
 if($form->validate())
 {
 if($form->assign())
 {
 Yii::app()->user->setFlash('success',$form->username . "
 has been added to the project.");
 //reset the form for another user to be associated if desired
 $form->unsetAttributes();
 $form->clearErrors();
 }
 }
 }
$form->project = $project;
$this->render('adduser',array('model'=>$form));
}

This is all pretty familiar to us at this point. It handles both the initial GET request to
display the form as well as the POST request after the form is submitted. It follows
very much the same approach as our SiteController::actionLogin() method.
The highlighted code in the previous code snippet is, however, something we have
not seen before. If the submitted form request is successful, it sets what is called
a flash message. A flash message is a temporary message stored briefly in the
session. It is only available in the current and the next requests. Here we are using
the setFlash() method of our CWebUser application user component to store a
temporary message that the request was successful. When we talk about the view in
the next section, we will see how to access this message and display it to the user.

http://www.yiiframework.com/doc/api/CWebUser
http://www.yiiframework.com/doc/api/CWebUser

Chapter 7

[181]

One other change we have to make is to the base controller class method
Controller::accessRules(). As you recall, we added our access rules to this base
class so that they apply to each of our user, issue, and project controller classes. We
need to add in this new action name to the basic access rules list so that a logged in
user is allowed to access this action:

public function accessRules()
{
return array(
array('allow', // allow all users to perform 'index' and 'view'
actions
'controllers'=>array('issue','project','user'),
'actions'=>array('index','view','addUser'),
'users'=>array('@'),
),

Adding the new view file to display the form
Our new action method is calling ->render('adduser') to render a view file, so we
need to get that created. The following is the full listing of our implementation for
protected/views/project/adduser.php:

<?php
$this->pageTitle=Yii::app()->name . ' - Add User To Project';
$this->breadcrumbs=array(
$model->project->name=>array('view','id'=>$model->project->id),
'Add User',
);
$this->menu=array(
array('label'=>'Back To Project', 'url'=>array('view','id'=>$model-
>project->id)),
);
?>

<h1>Add User To <?php echo $model->project->name; ?></h1>

<?php if(Yii::app()->user->hasFlash('success')):?>
<div class="successMessage">
<?php echo Yii::app()->user->getFlash('success'); ?>
</div>
<?phpendif; ?>

<div class="form">
<?php $form=$this->beginWidget('CActiveForm'); ?>

User Access Control

[182]

<p class="note">Fields with * are
required.</p>

<div class="row">
<?php echo $form->labelEx($model,'username'); ?>
<?php
$this->widget('zii.widgets.jui.CJuiAutoComplete', array(
'name'=>'username',
'source'=>$model->createUsernameList(),
'model'=>$model,
'attribute'=>'username',
'options'=>array(
'minLength'=>'2',
),
'htmlOptions'=>array(
'style'=>'height:20px;'
),
));
?>
<?php echo $form->error($model,'username'); ?>
</div>

<div class="row">
<?php echo $form->labelEx($model,'role'); ?>
<?php
echo $form->dropDownList($model,'role',
Project::getUserRoleOptions()); ?>
<?php echo $form->error($model,'role'); ?>
</div>

<div class="row buttons">
<?php echo CHtml::submitButton('Add User'); ?>
</div>

<?php $this->endWidget(); ?>
</div>

We have seen most of this before. We are defining active labels and active form
elements that tie directly to our ProjectUserForm form model class. We populate
our dropdown using the static method we implemented earlier on the project model
class. We populate our Zii library autocomplete widget (CJuiAutoComplete) data
with the method createUsernameList() we added to the project user form model
class. We also added a simple link to the menu options to take us back to the project
details page.

Chapter 7

[183]

The highlighted code in the previous code snippet is new to us. This is an example
of using the flash message that we introduced and used in the actionAdduser()
method. We access the message we set using setFlash() by asking the same user
component if it has a flash message, using hasFlash('succcess'). We feed the
hasFlash() method the exact name we gave it when we set the message. This is a
nice way to present the user with some simple feedback about their previous request.

One other small change we made was to add a simple link from the project details
page so we could access this from the application. The following highlighted line
was added to the project view.php view file's menu array:

$this->menu=array(
…
array('label'=>'Add User To Project', 'url'=>array('project/adduser',
'id'=>$model->id)),
);

This gives us access to the new form when viewing the details of a project.

Putting it all together
With all of these changes in place, we can navigate to our new form by viewing one
of the project details pages. For example, when viewing project ID #1 via http://
localhost/trackstar/index.php?r=project/view&id=1, in the right-hand side
column menu of operations is a hyperlink [Add User To Project] and clicking on that
link should display the following page:

User Access Control

[184]

You can use the forms we have built previously to create new projects and users to
ensure you have a few of them added to the application. Then you can play around
with adding users to projects. As you type in the Username field, you will see
suggestions for autocompletion. If you attempt to add a user that is not in the user
database table, you should see an error telling you so. If you attempt to enter a user
that has already been added to the project, you will receive an error telling you so.
And upon successful additions, you will see a short flash message indicating success.

Now that we have the ability to assign users to projects and add them to our RBAC
authorization hierarchy, we should alter our logic for when we are adding a new
project. When a new project is added, it should assign the user who is adding the
project as the owner of the project. This way, the creator of the project will have full
administrative access to the project. I will leave this as homework for the reader. You
can view a solution to this exercise by downloading the available source code for the
TrackStar application that accompanies this book.

Checking authorization level
The last thing we need to do to complete what we set out to do in this chapter is to
add the authorization checks for the different functionality we have implemented.
Earlier in this chapter we outlined, and then implemented, the RBAC authorization
hierarchy for the different roles we have. Everything is in place to allow or deny
access to functionality based on the permissions that have been granted to users
within projects, with one exception. We have not yet implemented the authorization
checks necessary when attempting to request functionality. The application is still
using the simple access filter that is defined on each of our project, issue, and user
controllers. We'll do this for one of our permissions and then leave the remaining
implementation as an exercise for the reader.

We see from looking back at our authorization hierarchy that only project owners
should be able to add new users to a project. So, let's add this authorization check.
We'll hide the link for adding a user on the project details page unless the current
user is in the owner role for that project (before implementing, you should make sure
you have added at least one owner and one member or reader to a project so you can
test them when complete). Open up the protected/views/project/view.php view
file where we placed the link in the menu items for adding a new user. Remove that
array element from the menu array items, and then push it on the end of the array
only if the checkAccess() method returns true. The following code shows how the
menu items should be defined:

$this->menu=array(
array('label'=>'List Project', 'url'=>array('index')),
array('label'=>'Create Project', 'url'=>array('create')),

Chapter 7

[185]

array('label'=>'Update Project', 'url'=>array('update', 'id'=>$model-
>id)),
array('label'=>'Delete Project', 'url'=>'#', 'linkOptions'=>array('su
bmit'=>array('delete','id'=>$model->id),'confirm'=>'Are you sure you
want to delete this item?')),
array('label'=>'Manage Project', 'url'=>array('admin')),
array('label'=>'Create Issue', 'url'=>array('issue/create',
'pid'=>$model->id)),

);
if(Yii::app()->user->checkAccess('createUser',array('project'=>$mod
el)))
{
$this->menu[] = array('label'=>'Add User To Project',
'url'=>array('adduser', 'id'=>$model->id));
}

This implements the same approach we discussed earlier in the chapter. We call
checkAccess() on the current user and send in the name of the permission we
want to check. Also, since our roles are within the context of projects, we send in
the project model instance as an array input. This will allow the business rule to
execute, which has been defined in the authorization assignment. Now if we log in as
a project owner for a particular project and navigate to that project details page, we'll
see the menu option for adding a new user to the project. Conversely, if we log in as
a user in the member or reader role of that same project, and again navigate to the
details page, this link will not display.

This, of course, will not prevent a savvy user from gaining access to this functionality
by navigating using the URL directly. For example, even while logged in to the
application as a user in the reader role for, say, project #1, if I navigate directly to
http://localhost/trackstar/index.php?r=project/adduser&id=1 I can still
access the form.

To prevent this, we need to add our access check directly to the action method itself.
So, in the ProjectController::actionAdduser() method in the project controller
class, we can add the check:

public function actionAdduser($id)
{
$project = $this->loadModel($id);
if(!Yii::app()->user->checkAccess('createUser',
array('project'=>$project)))
{
throw new CHttpException(403,'You are not authorized to perform this
action.');
}

$form=new ProjectUserForm;

User Access Control

[186]

Now when we attempt to access this URL directly, we will be denied access unless
we are in the project owner role for the project.

We won't go through implementing the access checks for all of the other
functionality. Each would be implemented in a similar manner. We leave this as an
exercise for the reader. This implementation is not necessary in order to continue to
follow along with the remaining code examples throughout the book.

Summary
We have covered a lot in this chapter. First we were introduced to the basic access
control filter that Yii provides as one method to allow and deny access to specific
controller action methods. We used this approach to ensure that users be logged in
to that application before gaining access to any of the main functionality. We then
took a detailed walk through Yii's RBAC model, which allows for a much more
sophisticated approach to access control. We built an entire user authorization
hierarchy based on application roles. In the process, we were introduced to writing
console applications in Yii, and to some of the benefits of this wonderful feature. We
then built in new functionality to allow the addition of users to projects and being
able to assign them to appropriate roles within those projects. Finally, we discovered
how to implement the needed access checks throughout the application to utilize the
RBAC hierarchy to appropriately grant/deny access to feature functionality.

In the next chapter, we are going to add even more functionality for users, one of
which is the ability to leave comments on our project issues.

Adding User Comments
With the implementation of user management throughout the two previous
chapters, our Trackstar application is really starting to take shape. The bulk of our
primary application feature functionality is now behind us. We can now start to
focus on some of the nice-to-have features. The first of these that we will tackle is the
ability for users to leave comments on the project issues.

The ability for users to engage in dialog about project issues is an important part of
what any issue tracking tool should provide. One way to achieve this is to allow users
to leave comments directly on the issues. The comments will form a conversation
about the issue and provide immediate as well as historical context to help track the
full lifespan of any issue. We will also use comments to demonstrate the use of Yii
widgets and how to establish a portlet model for delivering content to the user (for
more on portlets, see http://en.wikipedia.org/wiki/Portlet).

Feature planning
The goal of this chapter is to implement feature functionality in the Trackstar
application that allows users to leave and read comments on issues. When the
user is viewing the detail of any project issue, they should be able to read all
comments previously added as well as create a new comment on the issue. We
also want to add a small fragment of content or portlet to the project listing page to
display a list of recent comments left on all of the issues. This will be a nice way to
provide a window into recent user activity and allow easy access to the latest issues
that have active conversations.

Adding User Comments

[188]

The following is a list of high-level tasks we will need to complete in order to achieve
these goals:

1.	 Design and create a new database table to support comments.
2.	 Create the Yii AR class associated with our new comments table.
3.	 Add a form directly to the issue details page to allow users to

submit comments.
4.	 Display a list of all comments associated with an issue directly on its

details page.
5.	 Take advantage of Yii widgets to display a list of the most recent comments

on the projects listing page.

Creating the model
We first need to create a new table to house our comments. As you might expect, we
will use a database migration to make this addition to our database structure:

$ cd /Webroot/trackstar/protected

$./yiic migrate create create_user_comments_table

The up() and down() methods are as follows:

 public function up()
 {
 //create the issue table
 $this->createTable('tbl_comment', array(
 'id' => 'pk',
 'content' => 'text NOT NULL',
 'issue_id' => 'int(11) NOT NULL',
 'create_time' => 'datetime DEFAULT NULL',
 'create_user_id' => 'int(11) DEFAULT NULL',
 'update_time' => 'datetime DEFAULT NULL',
 'update_user_id' => 'int(11) DEFAULT NULL',
), 'ENGINE=InnoDB');

 //the tbl_comment.issue_id is a reference to tbl_issue.id
 $this->addForeignKey("fk_comment_issue", "tbl_comment", "issue_
id", "tbl_issue", "id", "CASCADE", "RESTRICT");

 //the tbl_issue.create_user_id is a reference to tbl_user.id
 $this->addForeignKey("fk_comment_owner", "tbl_comment", "create_
user_id", "tbl_user", "id", "RESTRICT, "RESTRICT");

Chapter 8

[189]

 //the tbl_issue.updated_user_id is a reference to tbl_user.id
 $this->addForeignKey("fk_comment_update_user", "tbl_comment",
"update_user_id", "tbl_user", "id", "RESTRICT", "RESTRICT");

 }

 public function down()
 {
 $this->dropForeignKey('fk_comment_issue', 'tbl_comment');
 $this->dropForeignKey('fk_comment_owner', 'tbl_comment');
 $this->dropForeignKey('fk_comment_update_user', 'tbl_comment');
 $this->dropTable('tbl_comment');
 }

In order to implement this database change, we need to run the migration:

$./yiic migrate

Now that our database table is in place, creating the associated AR class is a snap.
We have seen this many times throughout the previous chapters. We know exactly
how to do this. We simply use the Gii code creation tool's Model Generator
command and create an AR class called Comment, based on our newly created
table tbl_comment. If needed, refer back to Chapter 4, Project CRUD and Chapter 5,
Managing Issues, for all the details on using this tool to create model classes.

After using the Gii tool to create the model class for comments, you'll notice that the
code generated for us already has some relations defined. These are based on the
foreign key relationships we defined on the tbl_comments table. The following is
what was created for us:

/**
 * @return array relational rules.
 */
 public function relations()
 {
 // NOTE: you may need to adjust the relation name and the related
 // class name for the relations automatically generated below.
 return array(
 'updateUser' => array(self::BELONGS_TO, 'User', 'update_user_
id'),
 'issue' => array(self::BELONGS_TO, 'Issue', 'issue_id'),
 'createUser' => array(self::BELONGS_TO, 'User', 'create_user_
id'),
);
 }

Adding User Comments

[190]

We can see that we have a relationship that specifies a comment belongs to an issue.
But we also need to define the one-to-many relationship between an issue and its
comments. One issue can have many comments. This change needs to be made in the
Issue model class.

Had we created our comment model at the same time
we created our Issue model, this relation would have
been created for us.

In addition to this, we will also add a relationship as a statistical query to easily
retrieve the number of comments associated with a given issue. Here are the changes
we make to the Issue::relations() method:

public function relations()
{
 return array(
 'requester' => array(self::BELONGS_TO, 'User', 'requester_id'),
 'owner' => array(self::BELONGS_TO, 'User', 'owner_id'),
 'project' => array(self::BELONGS_TO, 'Project', 'project_id'),
 'comments' => array(self::HAS_MANY, 'Comment', 'issue_id'),
 'commentCount' => array(self::STAT, 'Comment', 'issue_id'),
);
}

This establishes the one-to-many relationship between an issue and comments. It
also defines a statistical query to allow us to easily retrieve the total comment count
for any given issue instance.

Statistical query
The commentCount relation defined previously is a new type of
relation we have not seen before. In addition to relational queries, Yii
also offers what is called a statistical or aggregational relationship.
These are very useful in cases where there is a one-to-many
(HAS_MANY) or many-to-many (MANY_MANY) relationship between
objects. In such cases, we can define statistical relationships to allow
us to easily get the total number of related objects. We have taken
advantage of this in the previous relationship declarations to allow
us to easily retrieve the total number of comments for any given
issue instance. For more information on using statistical queries in
Yii, refer to http://www.yiiframework.com/doc/guide/1.1/
en/database.arr#statistical-query.

Chapter 8

[191]

We also need to change our newly created Comment AR class to extend our custom
TrackStarActiveRecord base class, so that it benefits from the logic we placed
in the beforeSave() method. Simply alter the beginning of the class definition,
as follows:

<?php
 /**
 * This is the model class for table "tbl_comment".
 */
class Comment extends TrackStarActiveRecord
{

We'll make one last small change to the definitions in the Comment::relations()
method. The relational attributes were named for us when the class was created.
Let's change the one named createUser, to author, as this related user represents
the author of the comment. This is just a semantic change, but it will help to make
our code easier to read and understand. Change the definition from 'createUser'
=> array(self::BELONGS_TO, 'User', 'create_user_id'), to 'author' =>
array(self::BELONGS_TO, 'User', 'create_user_id').

Creating the comment CRUD
Now that we have our AR model class in place, creating the CRUD scaffolding to
manage the related entity is easy. Simply use the Gii code generation tool's Crud
Generator command with the AR class name, Comment, as the argument. We have
seen this many times in previous chapters, so we won't go through it in detail again
here. If needed, refer back to Chapter 4, Project CRUD and Chapter 5, Managing Issues,
for all the details on using the Gii tool to create CRUD scaffolding code. Although we
will not immediately implement full CRUD operations for our comments, it is nice to
have the scaffolding for the other operations in place.

After using Gii's Crud Generator, and as long as we are logged in, we should now be
able to view the autogenerated comment submission form via the following URL:

http://localhost/trackstar/index.php?r=comment/create

Adding User Comments

[192]

Altering the scaffolding to meet our
requirements
As we have seen many times before, we often have to make adjustments to the
autogenerated scaffolding code in order to meet the specific requirements of the
application. For one, our autogenerated form for creating a new comment has an
input field for every single column defined in the tbl_comment database table.
We don't actually want all of these fields to be part of the form. In fact, we want to
greatly simplify this form to only have a single input field for the comment content.
What's more, we don't want the user to access the form via the previously mentioned
URL, but rather only by visiting an issue details page. The user will add comments
on the same page where they are viewing the details of the issue. We want to build
towards something like what is depicted in the following screenshot:

Chapter 8

[193]

In order to achieve this, we are going to alter our Issue controller class to handle
the post of the comment form as well as alter the issue details view to display the
existing comments and new comment creation form. Also, since comments should
only be created within the context of an issue, we'll add a new method to the issue
model class to create new comments.

Adding a comment
As mentioned, we are going to have the issue instance create its own comments. For
this, we want to add a method to the Issue AR class. Here is that method:

/**
 * Adds a comment to this issue
 */
public function addComment($comment)
{
 $comment->issue_id=$this->id;
 return $comment->save();
}

This method ensures the proper setting of the comment issue ID before saving the
new comment. That is, when an instance of Issue creates a new comment, it is
understood that the comment belongs to that issue.

With this method in place, we can now turn our focus to the issue controller class.
Since we want the comment creation form to display from and post its data back to
the IssueController::actionView() method, we will need to alter that method.
We will also add a new protected method to handle the form post request. First, alter
the actionView() method to be the following:

public function actionView($id)
{
 $issue=$this->loadModel($id);
 $comment=$this->createComment($issue);
 $this->render('view',array(
 'model'=>$issue,
 'comment'=>$comment,
));
}

Adding User Comments

[194]

Then, add the following protected method to create a new comment and handle the
form post request for creating a new comment for this issue:

/**
 * Creates a new comment on an issue
 */
protected function createComment($issue)
{
 $comment=new Comment;
 if(isset($_POST['Comment']))
 {
 $comment->attributes=$_POST['Comment'];
 if($issue->addComment($comment))
 {
 Yii::app()->user->setFlash('commentSubmitted',"Your comment has
been added.");
 $this->refresh();
 }
 }
 return $comment;
}

Our new protected method, createComment(), is responsible for handling the
POST request submitted when a user is leaving a new comment on an issue. If the
comment is successfully created, we set a flash message to display to the user and
also do a page refresh so that our new comment will display. Of course, we still need
to alter our view file to make all of this display to the user. The changes made to
IssueController::actionView() are responsible for calling this new method and
also for feeding the new comment instance to the view for display.

Displaying the form
Now, we need to alter our view. First we are going to create a new view file to render
the display of our comments and the comment input form. We intend to display this
view file within another view file. As such, we don't want to display all of the general
page components, such as the header navigation and footer information, again.
View files that are intended to be displayed within other view files, or without any
extra decoration, are called partial views. You can then use the controller method
renderPartial(), as opposed to the render() method. Using renderPartial()
will only render the content contained within that view file and will not decorate the
display with any other content. We will be discussing this in much more detail in
Chapter 10, Making it Look Good, when we discuss using layouts and decorating your
view files.

Chapter 8

[195]

Yii uses a naming convention of a leading underscore (_) when creating partial view
files. Since we'll render this as a partial view, we'll stick with the naming conventions
and begin the filename with a leading underscore. Create a new file called _
comments.php under the protected/views/issue/ directory and add the following
code to that file:

<?php foreach($comments as $comment): ?>
<div class="comment">
 <div class="author">
 <?php echo CHtml::encode($comment->author->username); ?>:
 </div>

 <div class="time">
 on <?php echo date('F j, Y \a\t h:i a',strtotime($comment->create_
time)); ?>
 </div>

 <div class="content">
 <?php echo nl2br(CHtml::encode($comment->content)); ?>
 </div>
 <hr>
</div><!-- comment -->
<?php endforeach; ?>

This file accepts an array of comment instances as an input parameter and displays
them one by one. We now need to alter the view file for the issue detail to use this
new file. We do this by opening up protected/views/issue/view.php and adding
the following to the end of the file:

<div id="comments">
 <?php if($model->commentCount>=1): ?>
 <h3>
 <?php echo $model->commentCount>1 ? $model->commentCount . '
comments' : 'One comment'; ?>
 </h3>

 <?php $this->renderPartial('_comments',array(
 'comments'=>$model->comments,
)); ?>
 <?php endif; ?>

 <h3>Leave a Comment</h3>

 <?php if(Yii::app()->user->hasFlash('commentSubmitted')): ?>
 <div class="flash-success">

Adding User Comments

[196]

 <?php echo Yii::app()->user->getFlash('commentSubmitted'); ?>
 </div>
 <?php else: ?>
 <?php $this->renderPartial('/comment/_form',array(
 'model'=>$comment,
)); ?>
 <?php endif; ?>

</div>

Here we are taking advantage of the statistical query property, commentCount, which
we added earlier to our Issue AR model class. This allows us to quickly determine
if there are any comments available for the specific issue. If there are comments, it
proceeds to render them using our _comments.php display view file. It then displays
the input form that was created for us when we used the Gii Crud Generator
functionality. It will also display the simple flash message set upon a successfully
saved comment.

One last change we need to make is to the comment input form itself. As we have
seen many times in the past, the form created for us has an input field for every
column defined in the underlying tbl_comment table. This is not what we want to
display to the user. We want to make this a simple input form where the user only
needs to submit the comment content. So, open up the view file that houses the input
form, that is protected/views/comment/_form.php, and edit it to be as follows:

<div class="form">
<?php $form=$this->beginWidget('CActiveForm', array(
 'id'=>'comment-form',
 'enableAjaxValidation'=>false,
)); ?>
 <p class="note">Fields with * are
required.</p>
 <?php echo $form->errorSummary($model); ?>
 <div class="row">
 <?php echo $form->labelEx($model,'content'); ?>
 <?php echo $form->textArea($model,'content',array('rows'=>6,
'cols'=>50)); ?>
 <?php echo $form->error($model,'content'); ?>
 </div>

 <div class="row buttons">
 <?php echo CHtml::submitButton($model->isNewRecord ? 'Create' :
'Save'); ?>
 </div>

<?php $this->endWidget(); ?>

</div>

Chapter 8

[197]

With all of this in place, we can visit an issue listing page to see the comment form.
For example, if we visit http://localhost/trackstar/index.php?r=issue/
view&id=111, we see the following comment input form at the bottom of the page:

If we attempt to submit the comment without specifying any content, we see the
error as depicted in the following screenshot:

http://hostname/trackstar/index.php?r=issue/view&id=1
http://hostname/trackstar/index.php?r=issue/view&id=1

Adding User Comments

[198]

And then, if we are logged in as User One and we submit the comment My first
test comment, we are presented with the following display:

Creating a recent comments widget
Now that we have the ability to leave comments on issues, we are going to turn our
focus to the second goal of this chapter. We want to display a list of all of the recent
comments that have been left on various issues across all of the projects. This will
provide a nice snapshot of user communication activity within the application.
We also want to build this small block of content in a manner that will allow it to
be easily reused in various different locations throughout the site. This is very
much in the style of myriad web portal applications across the internet. These
small snippets of content are often referred to as portlets, and is why we referred to
building portlet architecture at the beginning of this chapter. Again, you can refer to
http://en.wikipedia.org/wiki/Portlet for more information on this topic.

Introducing CWidget
Lucky for us, Yii is ready-made to help us achieve this architecture. Yii provides
a component class called CWidget, which is perfect for achieving this type of
architecture. A Yii widget is an instance of the CWidget class (or a child class
thereof), and is a presentational component typically embedded in a view file to
display self-contained, reusable user interface features. We are going to use a Yii
widget to build a recent comments component and display it on the main project
details page so we can see comment activity across all issues related to the project. To
demonstrate the ease of re-use, we'll take it one step further and also display a list of
recent comments across all projects on the projects listings page.

Chapter 8

[199]

Named scopes
To begin creating our widget, we are going to first alter our Comment AR model
class to return the most recently added comments. To do this, we are going to take
advantage of another feature within Yii's AR model classes—named scopes.

Named scopes allow us to specify a named query, which provides an elegant way
to define SQL where conditions when retrieving lists of AR objects. Named scopes
are typically defined in the CActiveRecord::scopes() method as name=>criteria
pairs. For example, if we want to define a named scope called recent that would
return the five most recent comments; we could create the Comment::scopes()
method as such:

class Comment extends TrackStarActiveRecord
{
 ...
 public function scopes()
 {
 return array(
 'recent'=>array(
 'order'=>'create_time DESC',
 'limit'=>5,
),
);
 }
...
}

Now, we can easily retrieve a list of recent comments, using the following syntax:

$comments=Comment::model()->recent()->findAll();

You can also chain named scopes together. If we had defined another named scope,
for example, approved (if our application were to have an approval process before
comments would be displayed), we could get a list of the most recent approved
comments, thus:

$comments=Comment::model()->recent()->approved()->findAll();

You can see that by chaining these together, we have a flexible and powerful way to
retrieve our objects in specific contexts.

Named scopes must appear to the left of a find call (find, findAll, findByPk,
and so on) and also can only be used in a class-level context. The named scope
method call must be used along with ClassName::model(). See http://www.
yiiframework.com/doc/guide/1.1/en/database.ar#named-scopes for more
information on named scopes.

http://www.yiiframework.com/doc/guide/1.1/en/database.ar#named-scopes
http://www.yiiframework.com/doc/guide/1.1/en/database.ar#named-scopes

Adding User Comments

[200]

Named scopes can also be parameterized. In the earlier recent named scope for
comments, we hardcoded the limit in the criteria to be 5. However, we may want
to be able to specify the limit number when we call the method. This is how we will
set up our named scope for comments. To add parameters, we specify the named
scope a bit differently. Rather than use the scopes() method to declare our scope,
we define a new public method whose name is the same as the scope name. Add the
following method to the Comment AR class:

public function recent($limit=5)
{
 $this->getDbCriteria()->mergeWith(
 array(
 'order'=>'t.create_time DESC',
 'limit'=>$limit,
)
);
 return $this;
}

One thing to note about this query condition is the use of t in the order value. This
is to help in the event that this is used along with another related table that has the
same column name. Obviously, when two tables that are being joined have columns
with the same name, we have to make a distinction between the two in our query.
For example, if we use this in the same query where we are retrieving Issue AR
information, both tbl_issue and tbl_comment tables have the create_time column
defined. We are trying to order by this column in the tbl_comment table and not the
one defined in the issue table. In relational AR query in Yii, the alias name for the
primary table is fixed as t, while the alias name for a relational table, by default, is
the same as the corresponding relation name. So, in this case, we specify t.create_
time to indicate that we want to use the primary table's column.

More on relational AR queries in Yii
With this method in place, we could combine the named scope with an eager loading
approach to also retrieve related Issue AR instances. For example, let's say we want
to get the last ten comments left on issues related to a project whose ID is 1. We
could use the following to do so:

$comments = Comment::model()->with(array('issue'=>array('condition'=>'
project_id=1')))->recent(10)->findAll();

Chapter 8

[201]

This query is new to us. We have not been using many of these options in our
previous queries. Previously, we were using different approaches to execute
relational queries:

•	 Load the AR instance
•	 Access the relational properties defined in the relations() method

For example, if we wanted to query for all of the issues associated with, say,
project ID #1, we would have been using something similar to the following
two lines of code:

// First retrieve the project whose ID is 1
$project=Project::model()->findByPk(1);

// Then retrieve the project's issues (a relational query is actually
being performed behind the scenes here)
$issues=$project->issues;

This familiar approach uses what is referred to as lazy loading. When we first create
the project instance, the query does not return all of the associated issues. It only
retrieves the associated issues upon a subsequent, explicit request for them, that is
when $project->issues is executed. This is referred to as "lazy" because it waits to
load the issues until they are requested at a later time.

This approach is very convenient and can also be very efficient, especially in those
cases where the associated issues are not required. However, in other circumstances,
this approach can be somewhat inefficient. For example, if we wanted to retrieve the
issue information across N projects, then using this lazy approach would involve
executing N join queries. Depending on how large N is, this could be very inefficient.
In these situations, we have another option. We can use what is called eager loading.

The eager loading approach retrieves the related AR instances at the same time as the
main AR instances are requested. This is accomplished by using the with() method
in concert with either the find() or findAll() methods for AR query. Sticking with
our project example, we could use eager loading to retrieve all issues for all projects
by executing the following single line of code:

//retrieve all project AR instances along with their associated issue
AR instances
$projects = Project::model()->with('issues')->findAll();

Now, in this case, every project AR instance in the $projects array already has its
associated issues property populated with an array of Issue AR instances. This
result has been achieved by using just a single join query.

Adding User Comments

[202]

So, let's look back at our example of retrieving the last ten comments for a
specific project:

$comments = Comment::model()->with(array('issue'=>array('condition'=>'
project_id=1')))->recent(10)->findAll();

We are using the eager loading approach to retrieve the issues along with the
comments, but this one is slightly more complex. This query specifies a single join
between the tbl_comment and tbl_issue tables. This relational AR query would
basically execute something similar to the following SQL statement:

SELECT tbl_comment.*, tbl_issue.* FROM tbl_comment LEFT OUTER JOIN
tbl_issue ON (tbl_comment.issue_id=tbl_issue.id) WHERE (tbl_issue.
project_id=1) ORDER BY tbl_comment.create_time DESC LIMIT 10;

Armed with the knowledge about the benefits of lazy loading versus eager loading
in Yii, we should make an adjustment to how the issue model is loaded within the
IssueController::actionView() method. Since we have altered the issues' detail
view to display our comments, including the author of the comment, we know it will
be more efficient to use the eager loading approach to load our comments along with
their respective authors when we make the call to IssueController::loadModel().
To do this, we can add an additional parameter as a simple input flag to indicate
whether or not we want to load the comments as well.

Alter the IssueController::loadModel() method as follows:

 public function loadModel($id, $withComments=false)
 {
 if($withComments)
 $model = Issue::model()->with(array('comments'=>array('with'=>'a
uthor')))->findByPk($id);
 else
 $model=Issue::model()->findByPk($id);
 if($model===null)
 throw new CHttpException(404,'The requested page does not
exist.');
 return $model;
 }

Chapter 8

[203]

There are three places where the loadModel() method is called in the
IssueController method: actionView, actionUpdate, and actionDelete. We
only need the associated comments when we are viewing the issue details. So, we
have made the default to not retrieve the associated comments. We just need to alter
the actionView() method to add true to the loadModel() call.

public function actionView($id)
{
 $issue=$this->loadModel($id, true);
....
}

With this in place, we will load the issue along with all of its associated comments,
and for each comment, we'll load the associated author information, all with just one
database call.

Creating the widget
We are now ready to create our new widget to make use of all the previously
mentioned changes to display our recent comments.

As we previously mentioned, a widget in Yii is a class that extends from the
framework class, CWidget, or one of its child classes. We'll add our new widget to
the protected/components/ directory, as the contents of this directory are already
specified in the main configuration file to be autoloaded within the application.
This way, we won't have to explicitly import the class every time we wish to use it.
We'll call our widget RecentComments and add a .php file of the same name to this
directory. Add the following class definition to this newly created RecentComments.
php file:

<?php
/**
 * RecentCommentsWidget is a Yii widget used to display a list of
recent comments
 */
class RecentCommentsWidget extends CWidget
{
 private $_comments;
 public $displayLimit = 5;
 public $projectId = null;

 public function init()
 {
 if(null !== $this->projectId)

Adding User Comments

[204]

 $this->_comments = Comment::model()->with(array('issue'=>a
rray('condition'=>'project_id='.$this->projectId)))->recent($this-
>displayLimit)->findAll();
 else
 $this->_comments = Comment::model()->recent($this-
>displayLimit)->findAll();
 }

 public function getData()
 {
 return $this->_comments;
 }

 public function run()
 {
 // this method is called by CController::endWidget()
 $this->render('recentCommentsWidget');
 }
}

The primary work involved when creating a new widget is to override the init()
and run() methods of the base class. The init() method initializes the widget and
is called after its properties have been initialized. The run() method executes the
widget. In this case, we simply initialize the widget by requesting recent comments
based on the $displayLimit and $projectId properties, using the query we
discussed previously. The execution of the widget itself simply renders its associated
view file, which we have yet to create. View files for widgets, by convention, are
placed in a views/ directory within the same directory where the widget resides and
are named the same as the widget, except starting with a lowercase letter. Sticking
with this convention, create a new file whose fully qualified path is protected/
components/views/recentCommentsWidget.php. Once created, add the following
to that file:

 <?php foreach($this->getData() as $comment): ?>
 <div class="author">
 <?php echo $comment->author->username; ?> added a comment.
 </div>
 <div class="issue">
 <?php echo CHtml::link(CHtml::encode($comment->issue->name),
array('issue/view', 'id'=>$comment->issue->id)); ?>
 </div>

 <?php endforeach; ?>

Chapter 8

[205]

This calls the RecentCommentsWidget::getData() method, which returns an array
of comments. It then iterates over each of them, displaying who added the comment
and the associated issue on which the comment was left.

In order to see the results, we need to embed this widget into an existing controller
view file. As previously mentioned, we want to use this widget on the projects listing
page to display all recent comments across all projects, and also on a specific project
details page to display the recent comments for just that specific project.

Let's start with the projects listing page. The view file responsible for displaying that
content is protected/views/project/index.php. Open up that file and add the
following at the bottom:

<?php $this->widget('RecentCommentsWidget'); ?>

If we view the projects listing page http://localhost/trackstar/index.
php?r=project now, we see something similar to the following screenshot:

We have now embedded our new recent comments data within the page, simply
by calling the widget. This is nice, but we can take our little widget one step further
to have it display in a consistent manner with all other potential portlets in the
application. We can do this by taking advantage of another class provided to us by
Yii, CPortlet.

Adding User Comments

[206]

Introducing CPortlet
CPortlet is part of Zii, the official extension class library that comes packaged
with Yii. It provides a nice base class for all portlet-style widgets. It will allow us to
render a nice title as well as a consistent HTML markup, so that all portlets across
the application can be easily styled in a similar manner. Once we have a widget
that renders content, such as our RecentCommentsWidget, we can simply use
the rendered content of our widget as the content for CPortlet, which itself is a
widget, as it also extends from CWidget. We can do this by placing our call to the
RecentComments widget between a beginWidget() and an endWiget() call for
CPortlet, as follows:

<?php $this->beginWidget('zii.widgets.CPortlet', array(
 'title'=>'Recent Comments',
));

$this->widget('RecentCommentsWidget');

$this->endWidget(); ?>

Since CPortlet provides a title property, we set it to be something meaningful for
our portlet. We then use the rendered content of the RecentComments widget to
provide the content for the portlet widget. The end result of this is depicted in the
following screenshot:

Chapter 8

[207]

This is not a huge change from what we had previously, but we have now placed
our content into a consistent container that is already being used throughout the
site. Note the similarity between the right-hand column menu content block and our
newly created, recent comments content block. I am sure it will come as no surprise
to you that this right-hand column menu block is also displayed within a CPortlet
container. Taking a peek in protected/views/layouts/column2.php, which is a
file that the yiic webapp command autogenerated for us when we initially created
the application, reveals the following code:

<?php
 $this->beginWidget('zii.widgets.CPortlet', array(
 'title'=>'Operations',
));
 $this->widget('zii.widgets.CMenu', array(
 'items'=>$this->menu,
 'htmlOptions'=>array('class'=>'operations'),
));
 $this->endWidget();
?>

So, it seems that the application has been taking advantage of portlets all along!

Adding our widget to another page
Let's also add our portlet to the project details page and restrict the comments to just
those associated with the specific project.

Add the following at the end of the protected/views/project/view.php file:

<?php $this->beginWidget('zii.widgets.CPortlet', array(
 'title'=>'Recent Comments On This Project',
));

$this->widget('RecentCommentsWidget', array('projectId'=>$model->id));

$this->endWidget(); ?>

This is basically the same thing we added to the projects listing page, except we are
initializing the widget's $projectId property by adding an array of name=>value
pairs to the call.

Adding User Comments

[208]

If we visit a specific project details page now, we should see something similar to the
following screenshot:

This preceding screenshot shows the details page for Project #1, which has one
associated issue with just one comment on that issue, as depicted in the screenshot.
You may need to add a few issues and comments on those issues in order to generate
a similar display. We now have a way to display recent comments with a few
different configurable parameters anywhere throughout the site, in a consistent and
easily maintainable manner.

Chapter 8

[209]

Summary
With this chapter, we have started to flush out our Trackstar application with the
functionality that has come to be expected of most user-based web applications
today. The ability for users to communicate with each other within the application
is an essential part of a successful issue management system.

As we created this essential feature, we were able to look deeper into how to write
relational AR queries. We were also introduced to content components called
widgets and portlets. This introduced us to an approach to developing small content
blocks and being able to use them anywhere throughout the application. This
approach greatly increases re-use, consistency, and ease of maintenance.

In the next chapter, we'll build upon the recent comments widget created here and
expose the content generated by our widget as an RSS feed to allow users to track
application or project activity without having to visit the application.

Adding an RSS Web Feed
In the previous chapter, we added the ability for the user to leave comments on
issues and to display a list of these comments, utilizing portlet architecture to
allow us to easily and consistently display that listing anywhere throughout the
application. In this chapter, we are going to build upon this feature and expose this
list of comments as an RSS data feed. Furthermore, we are going to use the existing
feed functionality available in another open source framework, Zend Framework,
to demonstrate just how easy it is for a Yii application to integrate with other
frameworks and libraries.

Feature planning
The goal of this chapter is to create an RSS feed using the content created from our
user-generated comments. We should allow users to subscribe to a comment feed
that spans all projects as well as subscribe to individual project feeds. Luckily, the
widget functionality we built previously already has the capability to return a list of
recent comments across all projects as well as restrict the data to one specific project.
So, we have already coded the appropriate methods to access the necessary data.
The bulk of this chapter will focus on putting that data in the correct format to be
published as an RSS feed and on adding links to our application to allow users to
subscribe to these feeds.

The following is a list of high-level tasks we will be completing in order to achieve
these goals:

•	 Downloading and installing Zend Framework into the Yii application
•	 Creating a new action in a controller class to respond to the feed request and

return the appropriate data in an RSS format
•	 Altering our URL structure for ease of use
•	 Adding our newly created feed to both the project listings page as well as to

each individual project details page

Adding an RSS Web Feed

[212]

A little background–content syndication,
RSS, and Zend Framework
Web content syndication has been around for many years but has only gained
enormous popularity over the past few years. Web content syndication refers to
publishing information in a standardized format so that it can easily be used by other
websites and easily consumed by reader applications. Many news sites have long
been electronically syndicating their content, but the massive explosion of web logs
(also known as blogs) across the internet has turned content syndication, known as
feeds, into an expected feature of almost every website. Our TrackStar application
will be no exception.

Really Simple Syndication (RSS) is an XML format specification that provides a
standard for web content syndication. There are other formats that could be used,
but due to the overwhelming popularity of RSS among most websites, we will focus
on delivering our feed in this format.

Zend is known as "The PHP Company". One of the products they offer to assist in
application development is Zend Framework. The framework provides components
that can be incorporated into other framework applications. Yii is flexible enough to
allow us to use pieces of other frameworks. We will be using just one component of the
Zend Framework library, called Zend_Feed, so that we don't have to write all of the
underlying "plumbing" code to generate our RSS-formatted web feeds. For more on
Zend_Feed, visit http://www.zendframework.com/manual/en/zend.feed.html.

Installing Zend Framework
Since we are using Zend Framework to help support our RSS needs, we first need
to download and install the framework. To download the framework files, visit
http://www.zend.com/community/downloads. Since we will only be utilizing a
single component of this framework, the minimal version of the framework will
suffice. We are using Version 1.1.12.

When you expand the downloaded framework file, you should see the following
high-level directory and file structure:

•	 INSTALL.txt

•	 LICENSE.txt

•	 README.txt

•	 bin/

•	 library/

Chapter 9

[213]

In order to use this framework within our Yii application, we need to move some
of the files within our application's directory structure. Let's create a new directory
called vendors/, under the /protected directory within our application. Then,
move the Zend Framework directory /library/Zend underneath this newly created
directory. After everything is in place, ensure that protected/vendors/Zend/Feed.
php exists in the TrackStar application.

Using Zend_Feed
Zend_Feed is a small component of Zend Framework that encapsulates all of the
complexities of creating web feeds behind a simple, easy-to-use interface. It will help
us get a working, tested, RSS-compliant data feed in place in very little time. All we
will need to do is format our comment data in a manner expected by Zend_Feed, and
it will do the rest.

We need a place to house the code to handle the requests for our feed. We could
create a new controller for this, but to keep things simple, we'll just add a new action
method to our main CommentController.php file to handle the requests. Rather
than add to the method a little at a time, we'll list the entire method here, and then
talk through what it is doing.

Open up CommentController.php and add the following public method:
/**
 * Uses Zend Feed to return an RSS formatted comments data feed
 */
 public function actionFeed()
 {
 if(isset($_GET['pid']))
 {
 $comments = Comment::model()->with(array(
 'issue'=>array(
 'condition'=>'project_id=:projectId',
 'params'=>array(':projectId'=>intval($_GET['pid'])),
)))->recent(20)->findAll();
 }
 else
 $comments = Comment::model()->recent(20)->findAll();

 //convert from an array of comment AR class instances to an
name=>value array for Zend
 $entries=array();

 foreach($comments as $comment)

Adding an RSS Web Feed

[214]

 {

 $entries[]=array(
 'title'=>$comment->issue->name,
 'link'=>CHtml::encode($this->createAbsoluteUrl('issue/
view',array('id'=>$comment->issue->id))),
 'description'=> $comment->author->username . '
says:
' . $comment->content,
 'lastUpdate'=>strtotime($comment->create_time),
 'author'=>CHtml::encode($comment->author->username),
);
 }

 //now use the Zend Feed class to generate the Feed
 // generate and render RSS feed
 $feed=Zend_Feed::importArray(array(
 'title' => 'Trackstar Project Comments Feed',
 'link' => $this->createAbsoluteUrl(''),
 'charset' => 'UTF-8',
 'entries' => $entries,
), 'rss');

 $feed->send();

 }

This is all fairly simple. First, we check the input request querystring for the
existence of a pid parameter, which we take to indicate a specific project ID.
Remember that we want to optionally allow the data feed to restrict the content to
comments associated with a single project. Next, we use the same method that we
used in the previous chapter to populate our widget to retrieve a list of up to 20
recent comments, either across all projects, or if the project ID is specified, specific to
that project.

You may remember that this method returns an array of Comment AR class instances.
We iterate over this returned array and convert the data into the format accepted by
the Zend_Feed component. Zend_Feed accepts a simple array containing elements
that are themselves arrays containing the data for each comment entry. Each
individual entry is a simple associative array of name=>value pairs. To comply with
the specific RSS format, each of our individual entries must minimally contain a
title, a link, and a description. We have also added two optional fields, one called
lastUpdate, which Zend_Feed translates to the RSS field, pubDate, and one to
specify the author.

Chapter 9

[215]

There are a few extra helper methods we take advantage of in order to get the data in
the correct format. For one, we use the controller's createAbsoluteUrl() method,
rather than just the createUrl() method, in order to generate a fully qualified URL.
Using createAbsoluteUrl() will generate a link similar to the following:

http://localhost/trackstar/index.php?r=issue/view&id=5 as opposed to just
/index.php?r=issue/view&id=5

Also, to avoid errors such as unterminated entity reference generated from
PHP's DOMDocument::createElement() method, which is used by Zend_Feed to
generate the RSS XML, we need to convert all applicable characters to HTML entities
by using our handy helper function, CHtml::encode. So, we encode the link so
that a URL that looks like http://localhost/trackstar/index.php?r=issue/
view&id=5 will be converted to http://localhost/trackstar/index.
php?r=issue/view&id=5.

We need to also do this for our other data that will be in the RSS format. Both the
description and title fields are generated as a CDATA block, so using encode is not
necessary on these.

Once all of our entries have been properly populated and formatted, we use Zend_
Feed's importArray() method, which accepts an array to construct the RSS feed.
Finally, once the feed class is built from the input array of entries and returned, we
call the send() method on that class. This returns the properly formatted RSS XML
and appropriate headers to the client.

We need to make a couple of configuration changes to the CommentController.
php file and class before this will work. We need to include a few of the Zend
framework files in our comment controller. Add the following statements to the top
of CommentController.php:

Yii::import('application.vendors.*');
require_once('Zend/Feed.php');
require_once('Zend/Feed/Rss.php');

Finally, alter the CommentController::accessRules() method to allow any user to
access our newly added actionFeed() method:

public function accessRules()
 {
 return array(
 array('allow', // allow all users to perform 'index' and 'view'
actions
 'actions'=>array('index','view','feed'),
 'users'=>array('*'),
),

Adding an RSS Web Feed

[216]

This is really all there is to it. If we now navigate to http://localhost/trackstar/
index.php?r=comment/feed, we can view the results of our efforts. Since browsers
handle the display of RSS feeds differently, your experience might differ from the
following screenshot. The following screenshot is what you should see if viewing in
the Firefox browser:

However, viewing in the Chrome browser, we see the raw XML being displayed, as
seen in the following screenshot:

This may depend on your version. You may also be prompted to select the available
RSS reader extensions to install, such as the Google Reader or RSS Feed Reader
extensions for Chrome.

Chapter 9

[217]

Creating user-friendly URLs
So far, throughout our development, we have been using the default format of our
Yii application URL structure. This format, discussed back in Chapter 2, Getting
Started, in the section called Reviewing our request routing, uses a querystring
approach. We have the main parameter "r", which stands for route, followed by a
controllerID/actionID pair, and then optional querystring parameters, as needed by
the specific action methods being called. The URL we created for our new feed is no
exception. It is a long, cumbersome, and arguably ugly URL. There has got to be a
better way! Well, in fact there is.

We could make the previously mentioned URL look cleaner and more self-explanatory
by using the so-called path format, which eliminates the query string and puts the GET
parameters into the path info part of the URL:

Taking our comment feed URL as an example, instead of http://localhost/
trackstar/index.php?r=comment/feed, we would have http://localhost/
trackstar/index.php/comment/feed/.

What's more, we don't need to specify the entry script for each request. And we
can also take advantage of Yii's request routing configuration options to remove the
need to specify the controllerID/actionID pair as well. Our request could then look
like this:

http://localhost/trackstar/commentfeed

Also, it is common, especially with feed URLs, to have the .xml extension specified
at the end. So, it would be nice if we could alter our URL to look like the following:

http://localhost/trackstar/commentfeed.xml

This greatly simplifies the URL for users and is also an excellent format for URLs to
be properly indexed into major search engines (often referred to as "search engine
friendly URLs"). Let's see how we can use Yii's URL management features to alter
our URL to match this desired format.

Using the URL manager
The built-in URL manager in Yii is an application component that can be configured
in the protected/config/main.php file. Let's open up that file and add a new URL
manager component declaration to the components array:

'urlManager'=>array(
 'urlFormat'=>'path',
),

Adding an RSS Web Feed

[218]

As long as we stick with the default and name the component urlManager, we
do not need to specify the class of the component because it is predeclared to be
CUrlManager.php in the CWebApplication.php framework class.

With this one simple addition, our URL structure has changed to the path format
throughout the site. For example, previously, if we wanted to view a specific issue
whose ID is 1, we made the request using the following URL:

http://localhost/trackstar/index.php?r=issue/view&id=1

Now, with these changes in place, our URL looks like this:

http://localhost/trackstar/index.php/issue/view/id/1

You'll notice that the changes we have made have affected all the URLs
generated throughout the application. To see this, visit our feed again by going
to http://localhost/trackstar/index.php/comment/feed/. We notice that
all of our issue links have been reformatted to this new structure for us. This is all
thanks to our consistent use of the controller methods and other helper methods to
generate our URLs. We can alter the URL format in just one single configuration file,
and the changes will automatically propagate throughout the application.

Our URLs are looking better, but we still have the entry script, index.php,
specified and we are not yet able to append the .xml suffix at the end of our feed
URL. So, let's hide the index.php file as part of the URL and also set up the request
routing to understand that a request for commentfeed.xml actually means a request
for CommentController::actionFeed(). Let's actually tackle the latter first.

Configuring routing rules
Yii URL manager allows us to specify rules that define how URLs are parsed and
created. A rule consists of defining a route and a pattern. The pattern is used to
match the path information part of the URL to determine which rule is used to
parse or create URLs. The pattern may contain named parameters using the syntax
ParamName:RegExp. When parsing a URL, a matching rule will extract these named
parameters from the path info and put them into the $_GET variable. When a URL is
being created by the application, a matching rule will extract the named parameters
from $_GET and put them into the path info part of the created URL. If a pattern ends
with /*, it means additional GET parameters may be appended to the path info part
of the URL.

To specify URL rules, set the CUrlManager file's rules property as an array of rules
in the format pattern=>route.

http://localhost/trackstar/index.php/issue/view/id/1
http://localhost/trackstar/index.php/issue/view/id/1
http://localhost/trackstar/index.php/site/comment/fFeed/
http://localhost/trackstar/index.php/site/comment/fFeed/

Chapter 9

[219]

As an example, let's look at the two following rules:

'urlManager'=>array(
 'urlFormat'=>'path',
 'rules'=>array(
 'issues'=>'issue/index',
 'issue/<id:\d+>/*'=>'issue/view',
),
)

There are two rules specified in this code. The first rule says that if the user requests
the URL http://localhost/trackstar/index.php/issues, it should be treated
as http://localhost/trackstar/index.php/issue/index, and the same applies
when constructing such a URL. So, for example, if we are creating the URL in our
application using a controller's createUrl('issue/index') method, it would
generate /trackstar/index.php/issues rather than /trackstar/index.php/
issue/index.

The second rule contains a named parameter, id, which is specified using the
<ParamName:RegExp> syntax. It says that, for example, if the user requests the
URL http://localhost/trackstar/index.php/issue/1, it should be treated
as http://localhost/trackstar/index.php/issue/view/id/1. The same also
applies when constructing such a URL.

The route can also be specified as an array itself to allow the setting of other
attributes such as the URL suffix and whether or not the route should be
considered case-sensitive. We'll take advantage of these as we specify the
rule for our comment feed.

Let's add the following rule to our urlManager application component configuration:

'urlManager'=>array(
 'urlFormat'=>'path',
 'rules'=>array('commentfeed'=>array('comment/feed',
'urlSuffix'=>'.xml', 'caseSensitive'=>false),
),
),

Here, we have used the urlSuffix attribute to specify our desired URL .xml suffix.

Now we can access our feed by using the following URL:

http://localhost/trackstar/index.php/commentFeed.xml

http://localhost/trackstar/index.php/issues
http://localhost/trackstar/index.php/issues
http://localhost/trackstar/index.php/issue/view/id/1
http://localhost/trackstar/index.php/issue/view/id/1

Adding an RSS Web Feed

[220]

Removing the entry script from the URL
Now we just need to remove the index.php part from the URL. This is done in two
steps, as follows:

1.	 Alter the web server configuration to reroute all requests that don't
correspond to existing files or directories to index.php.

2.	 Set the urlManager component's showScriptName property to false.

The first step takes care of how the application routes the requests, while the latter
takes care of how URLs will be created throughout the application.

Since we are using Apache HTTP Server, we can perform the first step by creating a
.htaccess file in the application root directory and adding the following directives
to that file:

Turning on the rewrite engine is necessary for the following rules
and features.
FollowSymLinks must be enabled for this to work.
<IfModule mod_rewrite.c>
 Options +FollowSymlinks
 RewriteEngine On
</IfModule>

Unless an explicit file or directory exists, redirect all request to
Yii entry script
<IfModule mod_rewrite.c>
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d
 RewriteRule . index.php
</IfModule>

This approach is only for Apache HTTP Server. You will need to consult
the web server rewrite rules if using a different web server. Also note
that this information could be placed in the main Apache configuration
file as an alternative to using the .htaccess file approach.

With this .htaccess file in place, we can now visit our feed by navigating to
http://localhost/trackstar/commentfeed.xml (or http://localhost/
trackstar/commentFeed.xml, since we set the case sensitivity to false).

Chapter 9

[221]

However, even with this in place, if we use one of the controller methods or one of
our CHtml helper methods in our application to create our URL, say by executing
$this->createAbsoluteUrl('comment/feed'); in a controller class, it will
generate the following URL, with index.php still in the URL:

http://localhost/trackstar/index.php/commentfeed.xml

In order to instruct it to not use the entry script name when generating URLs, we
need to set that property on the urlManager component. We do this again in the
main.php configuration file, as follows:

'urlManager'=>array(
 'urlFormat'=>'path',
 'rules'=>array(
 'commentfeed'=>array('comment/feed', 'urlSuffix'=>'.xml',
'caseSensitive'=>false),
),
 'showScriptName'=>false,
),

In order to handle the addition of the project ID in the URL, we need to restrict the
comment feed data to comments associated to specific projects, and for that we need
to add one other rule, as follows:

'urlManager'=>array(
 'urlFormat'=>'path',
 'rules'=>array(
 '<pid:\d+>/commentfeed'=>array('comment/feed',
'urlSuffix'=>'.xml', 'caseSensitive'=>false),
 'commentfeed'=>array('comment/feed', 'urlSuffix'=>'.xml',
'caseSensitive'=>false),
),
 'showScriptName'=>false,
),

This rule also uses the <Parameter:RegEx> syntax to specify a pattern to allow for
a project ID to be specified before the commentfeed.xml part of the URL. With this
rule in place, we can restrict our RSS feed to comments specific to a project. For
example, if we just want the comments associated with Project #2, the URL format
would be:

http://localhost/trackstar/2/commentfeed.xml

http://localhost/trackstar/2/commentfeed.xml
http://localhost/trackstar/2/commentfeed.xml

Adding an RSS Web Feed

[222]

Adding the feed links
Now that we have created our feed and altered the URL structure to make it more
user and search engine friendly, we need to add the ability for users to subscribe to
the feed. One way to do this is to add the following code before rendering the pages
in which we want to add the RSS feed link. Let's do this for both the project listing
page as well as a specific project details page. We'll start with the project listings
page. This page is rendered by the ProjectController::actionIndex() method.
Alter that method as follows:

public function actionIndex()
{
 $dataProvider=new CActiveDataProvider('Project');

 Yii::app()->clientScript->registerLinkTag(
 'alternate',
 'application/rss+xml',
 $this->createUrl('comment/feed'));

 $this->render('index',array(
 'dataProvider'=>$dataProvider,
));
}

The highlighted code shown here adds the following to the <head> tag of the
rendered HTML:

<link rel="alternate" type="application/rss+xml" href="/commentfeed.
xml" />

In many browsers, this will automatically generate a little RSS feed icon in the
address bar. The following screenshot depicts what this icon looks like in the
Safari address bar:

Chapter 9

[223]

We make a similar change to add this link to a specific project details page. The
rendering of these pages is handled by the ProjectController::actionView()
method. Alter that method to the following:

public function actionView($id)
 {
 $issueDataProvider=new CActiveDataProvider('Issue', array(
 'criteria'=>array(
 'condition'=>'project_id=:projectId',
 'params'=>array(':projectId'=>$this->loadModel($id)->id),
),
 'pagination'=>array(
 'pageSize'=>1,
),
));

 Yii::app()->clientScript->registerLinkTag(
 'alternate',
 'application/rss+xml',
 $this->createUrl('comment/feed',array('pid'=>$this-
>loadModel($id)->id)));

 $this->render('view',array(
 'model'=>$this->loadModel($id),
 'issueDataProvider'=>$issueDataProvider,
));

 }

This is almost the same as what we added to the index method, except that we are
specifying the project ID so that our comment entries are restricted to just those
associated with that project. A similar icon will now display in the address bar on
our project details page. Clicking on these icons allow the user to subscribe to these
comment feeds.

The registerLinkTag() method allows you to also specify the
media attribute as the fourth argument, and then you can further
specify other supported attributes as an array of name=>value pairs,
as a fifth argument. See http://www.yiiframework.com/doc/
api/1.1/CClientScript/#registerLinkTag-detail for more
information on using this method.

http://www.yiiframework.com/doc/api/1.1/CClientScript/#registerLinkTag-detail
http://www.yiiframework.com/doc/api/1.1/CClientScript/#registerLinkTag-detail

Adding an RSS Web Feed

[224]

Summary
This chapter demonstrated just how easy it is to integrate Yii with other external
frameworks. We specifically used the popular Zend Framework to demonstrate this
and were able to quickly add an RSS compliant web feed to our application. Though
we specifically used Zend_Feed, we really demonstrated how to integrate any of the
Zend Framework components into the application. This further extends the already
very extensive feature offering of Yii, making Yii applications incredibly feature rich.

We also learned about the URL management features within Yii and altered our URL
format throughout the application to be more user and search engine friendly. This
is the first step in improving upon the look and feel of our application, something we
have very much neglected to this point. In the next chapter, we are going to take a
closer look at the presentation tier of Yii applications. Styles, themes, and generally
making things look good is the focus of the next chapter.

Making It Look Good
In the previous chapter, we started to add a little beauty to our application by
making our URLs more attractive to both the user and to search engine bots that
crawl the site. In this chapter, we are going to turn our focus more to the look and
feel of our application by covering the topics of layouts and themes in Yii. We will
be focusing on the approach one takes and the tools available to help design the
frontend of a Yii application rather than the design itself. So this chapter will focus
more on how to make your applications look good, rather than spending a lot of time
specifically designing our TrackStar application to actually be good-looking.

Feature planning
This chapter aims to focus on the frontend. We want to create a new look for our
site that is reusable and able to be implemented dynamically. We also want to
accomplish this without overwriting or otherwise removing our current design.
Finally, we are going to dig into the internationalization features of Yii to better
understand how to accommodate users from different geographic regions.

The following is a list of high-level tasks that we will need to complete in order to
achieve these goals:

•	 To create a new theme for our application by creating a new layout,
CSS, and other asset files needed to provide the application with a new
frontend design

•	 To use the internationalization and localization features of Yii to help
translate a portion of our application to a new language

Making It Look Good

[226]

Designing with layouts
One thing that you may have noticed is that we have added a lot of functionality to
our application without adding any explicit navigation to access this functionality.
Our home page has not yet changed from the default application we built. We still
have the same navigation items as we did when we first created our new application.
We need to change our basic navigation to better reflect the underlying functionality
present in the application.

Thus far, we have not fully covered how our application is using all of the view files
responsible for displaying the content. We know that our view files are responsible
for our data display and for housing the HTML sent back in response to each page
request. When we create new controller actions, we often create new views to handle
the display of the returned content from these action methods. Most of these views
are very specific to the action methods they support and are not used across multiple
pages. However there are some things, such as the main menu navigation, that are
used across multiple pages throughout the site. These types of UI components are
better suited to reside in what are called layout files.

A layout in Yii is a special view file used to decorate other view files. Layouts
typically contain markup or other user interface components that are common across
multiple view files. When using a layout to render a view file, Yii embeds the view
file into the layout.

Specifying a layout
There are two main places where a layout can be specified. One is the property
called $layout of the CWebApplication itself. This defaults to protected/
views/layouts/main.php. As is the case with all application settings, this can
be overridden in the main configuration file protected/config/main.php. For
example, if we created a new layout file protected/views/layouts/newlayout.
php and wanted to use this new file as our application-wide layout file, we could
alter our main config.php file to set the layout property as such:

return array(
 ...
 'layout'=>'newlayout',

The filename is specified without the .php extension and is relative to the
$layoutPath property of CWebApplication, which defaults to Webroot/
protected/views/layouts (which itself could be overridden in a similar manner if
this location does not suit your application's needs).

Chapter 10

[227]

The other place to specify the layout is by setting the $layout property of
the controller class. This allows for more granular control of the layout on a
controller-by-controller basis. This is the way it was specified when we generated the
initial application. Using the yiic tool to create our initial application automatically
created a controller base class Webroot/protected/components/Controller.php,
from which all of our other controller classes extend. Opening up this file reveals
that the $layout property has been set to column1. Setting the layout file at the more
granular controller level will override the setting in the CWebApplication class.

Applying and using a layout
The use of a layout file is implicit in the call to the CController::render()
method. That is, when you make the call to the render() method to render a
view file, Yii will embed the contents of the view file into the layout file specified
in either the controller class or the one specified at the application level. You can
avoid applying any layout decoration of the rendered view file by calling the
CController::renderPartial() method instead.

As previously mentioned, a layout file is typically used to decorate other view files.
One example use of a layout is to provide a consistent header and footer layout to
each and every page. When the render() method is called, what happens behind the
scenes is that a call is first sent to renderPartial() on the specified view file. The
output of this is stored in a variable called $content, which is then made available to
the layout file. So a very simple layout file might look like the following:

<!DOCTYPE html>
<html>
<head>
<title>Title of the document</title>
</head>
<body>
 <div id="header">
 Some Header Content Here
 </div>

 <div id="content">
 <?php echo $content; ?>
 </div>

 <div id="footer">
 Some Footer Content Here
 </div>
</body>
</html>

Making It Look Good

[228]

In fact let's try this out. Create a new file called newlayout.php and place it in the
default directory for layout files, called /protected/views/layouts/. Add the
preceding HTML content to this file and save it. Now we'll put this to use by altering
our site controller to use this new layout. Open up SiteController.php and override
the layout property set in the base class by explicitly adding it to this class, as such:

class SiteController extends Controller
{

 public $layout='newlayout';

This will set the layout file to newlayout.php, but only for this controller. Now
every time we make the call to the render() method within SiteController, the
newlayout.php layout file will be used.

One page that SiteController is responsible for rendering is the login
page. Let's take a look at that page to verify these changes. If we navigate to
http://localhost/trackstar/site/login (assuming we are not already
logged in), we now see something similar to the following screenshot:

If we simply comment out the $layout attribute we just added and refresh the login
page again, we'll be back to using the original main.php layout and our page will
now be back to what it looked like earlier.

Chapter 10

[229]

Deconstructing the main.php layout file
So far, all of our application pages have been using the main.php layout file to
provide the primary layout markup. Before we start making changes to our page
layout and design, it would serve us well to take a closer look at this main layout file.
You can view it in its entirety from the downloadable code for this chapter, or view
the standalone file at https://gist.github.com/3781042.

The first five lines will probably look somewhat familiar to you:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/>
 <meta name="language" content="en" />

These lines define a standard, HTML document-type declaration, followed by a
starting <html> element and then the start of our <head> element. Within the <head>
tag, we first have a <meta> tag to declare the standard XHTML-compliant uft-8
character encoding, followed by another <meta> tag that specifies English as the
primary language in which the website is written.

Introducing the Blueprint CSS framework
The next several lines beginning with the comment <!—blueprint CSS framework
--> may be less familiar to you. Another great thing about Yii is that it utilizes other
best-in-breed frameworks when appropriate, and the Blueprint CSS framework is
one such example.

The Blueprint CSS framework was included in the application as a by-product
of using the yiic tool when we initially created our application. It is included
to help standardize the CSS development. Blueprint is a CSS Grid framework. It
helps standardize your CSS, provides cross-browser compatibility, and provides
consistency in HTML element placement, helping reduce CSS errors. It comes with
many screen- and print-friendly layout definitions and helps jumpstart your design
by providing all of the CSS that you need, to get something that looks good and is in
place. For more on the Blueprint framework, visit http://www.blueprintcss.org/.

http://www.blueprintcss.org/

Making It Look Good

[230]

So the following lines of code are required and specific to the Blueprint
CSS framework:

<!-- blueprint CSS framework -->
<link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/screen.css" media="screen, projection" />
<link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/print.css" media="print" />
<!--[if lt IE 8]>
<link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/ie.css" media="screen, projection" />
<![endif]-->

The call to Yii::app()->request->baseUrl; is used here to get the relative URL to
the application.

Understanding the Blueprint installation
Yii by no means requires the use of Blueprint. However since the default application
generated does include the framework, understanding its installation and use will
be beneficial.

The typical installation of Blueprint involves first downloading the framework files
and then placing three of its .css files into the Yii application's main css directory.
If we take a peek under the main Webroot/css directory within our TrackStar
application, we already see the inclusion of these three files:

•	 ie.css

•	 print.css

•	 screen.css

So luckily for us, the basic installation has already been completed. In order to take
advantage of the framework, the previous <link> tags need to be placed under
the <head> tag for each web page. This is why these declarations are made in the
layout file.

The next two <link> tags are as follows:

<link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/main.css" />
<link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/form.css" />

Chapter 10

[231]

These <link> tags define some custom css definitions used to provide layout
declarations in addition to the ones specified in the Blueprint files. You should
always place any custom definitions below the ones provided by Blueprint so that
your custom declarations take precedence.

Setting the page title
Setting a specific and meaningful page title on a per page basis is important for
indexing your website pages in search engines, and helpful to users who want to
bookmark specific pages of your site. The next line in our main layout file specifies
the page title in the browser:

<title><?php echo CHtml::encode($this->pageTitle); ?></title>

Remember that $this in a view file refers to the controller class instance that
initially rendered the view. The $pageTitle attribute is defined down in Yii's
CController base class and will default to the action name followed by the
controller name. This is easily customized in the specific controller class or even
within each specific view file.

Defining a page header
It is often the case that websites are designed to have consistent header content
repeated across many pages. The next few lines in our main layout file define the
area for a page header:

<body>
<div class="container" id="page">

 <div id="header">
 <div id="logo"><?php echo CHtml::encode(Yii::app()->name); ?></
div>
 </div><!-- header -->

The first <div> tag with a class of container is required by the Blueprint framework
in order to display the content as a grid.

Again, using the Blueprint CSS Grid framework or any other CSS
framework is not at all a requirement of Yii. It is just there to help
you jumpstart your design layout if desired.

Making It Look Good

[232]

The next three lines lay out the first of the main content we see on these pages. They
display the name of the application in large letters. So far this has been displaying
the text My Web Application. I am sure that it has been driving some of you crazy.
Although we may change this later to use a logo image, let's go ahead and change
this to the real name of our application, TrackStar.

We could hardcode this name right here in the HTML. However, if we alter our
application configuration to reflect our new name, the changes will be propagated
everywhere throughout the site, wherever Yii::app()->name is being used. I am
sure that you could make this simple change in your sleep at this point. Simply open
up the main config.php file /protected/config/main.php where our application
configuration settings are defined, and change the value of the name property from
'name'=>'My Web Application', to the new value 'name'=>'TrackStar',.

Save the file, refresh your browser, and the header on the home page should now
look something similar to the following screenshot:

One thing we immediately notice in the previous screenshot is that the change has
been made in two places. It just so happens that the view file responsible for our
home page content, /protected/views/site/index.php, also uses the application
name property. Since we made the change in the application configuration file, our
change is reflected in both places.

Since the name property is something you may decide to change at some point, it
is good practice to also define the application id property. This property is used by
the framework to create unique signed keys as a prefix to access session variables,
cached data, and other tokens. If there is no id property specified, the name property
will be used. So changing it could render this data invalid. Let's also define an id
property for our application. This is added to protected/config/main.php, just as
we did for the name property. We can use the same value for this as we are using for
our name:

'id'=>'TrackStar',

Chapter 10

[233]

Displaying menu navigation items
The main site's navigation controls are often repeated across multiple pages in a web
application, and housing this in a layout makes it very easy to re-use. The next block
of markup and code in our main layout file defines the top-level menu items:

<div id="mainmenu">
 <?php $this->widget('zii.widgets.CMenu',array(
 'items'=>array(
 array('label'=>'Home', 'url'=>array('/site/index')),
 array('label'=>'About', 'url'=>array('/site/page',
'view'=>'about')),
 array('label'=>'Contact', 'url'=>array('/site/contact')),
 array('label'=>'Login', 'url'=>array('/site/login'),
'visible'=>Yii::app()->user->isGuest),
 array('label'=>'Logout ('.Yii::app()->user->name.')',
'url'=>array('/site/logout'), 'visible'=>!Yii::app()->user->isGuest)
),
)); ?>
</div><!-- mainmenu -->

Here we see that one of the Zii components called CMenu is being used. We
introduced Zii back in Chapter 8, Adding User Comments. To jog your memory, the
Zii extension library is a set of extensions developed by the Yii developer team. This
library comes packaged with the core Yii framework. Any of these extensions can
easily be used within a Yii application, simply by referring to the desired extension
class file using a path alias in the form of zii.path.to.ClassName. The root alias
zii is predefined by the application and the rest of the path is relative to this
framework directory. Since this Zii menu extension resides on your filesystem at
YiiRoot/zii/widgets/CMenu.php, we can simply use zii.widgets.CMenu when
referring to this in our application code.

CMenu takes in an array of associative arrays that provide the menu items. Each item
array consists of a label that will be displayed, a URL to which that item should be
linked, and an optional third value visible, which is a boolean value indicating
whether or not that menu item should be displayed. This is used here when defining
the Login and Logout menu items. We only want the Login menu item to be
displayed as a clickable link if the user is not already logged in. And conversely,
we would only want the Logout menu link to be displayed if the user is already
logged in. The use of the visible element in the array allows us to display these links
dynamically based on whether the user is logged in or not. The use of Yii::app()-
>user->isGuest is for this. This returns true if the user is not logged in and false
if the user is logged in. I am sure that you have already noticed that the Login option
turns into a Logout option in our application's main menu whenever you are logged
in, and vice versa.

Making It Look Good

[234]

Let's update our menu to provide the users with a way to navigate to our specific
TrackStar functionality. First off, we don't want anonymous users to be able to access
any real functionality except the login. So we need to make sure that the login page
is more or less the home page for anonymous users. Also, the main home page for
logged-in users should just be a listing of their projects. We'll achieve this by making
the following changes:

1.	 Changing our default home URL for the application to be the project listing
page rather than just site/index, as it is now.

2.	 Changing the default action within our default controller SiteController to
be the login action. In this way, any anonymous user that visits the top-level
URL http://localhost/trackstar/ will be redirected to the login page.

3.	 Altering our actionLogin() method to redirect the user to the project listing
page if they are already logged in.

4.	 Changing the Home menu item to read Projects, and changing the URL to be
the project listing page.

These are simple changes that we need to make. Starting at the top, we can change
the home URL application property in our main application config.php file. Open
up protected/config/main.php and add the following name=>value pair to the
returned array:

'homeUrl'=>'/trackstar/project',

This is all that is needed to make that change.

For the next change, open up protected/controllers/SiteController.php and
add the following to the top of the controller class:

public $defaultAction = 'login';

This sets the default action to be login. Now if you visit your top-level URL
http://localhost/trackstar/ for the application, you should be taken to the
login page. The only issue with this is that you will continue to be taken to the login
page from this top-level URL regardless of whether you are already logged in or not.
Let's fix this by implementing step 3 of the previous list. Change the actionLogin()
method within SiteController to include the following code at the beginning of
the method:

public function actionLogin()
{

 if(!Yii::app()->user->isGuest)
 {
 $this->redirect(Yii::app()->homeUrl);
 }

Chapter 10

[235]

This will redirect all the logged-in users to the application homeUrl, which we just
previously set to be the project listing page.

Finally let's alter the input array to our CMenu widget, to change the specification
for the Home menu item. Alter that block of code in the main.php layout file and
replace the line array('label'=>'Home', 'url'=>array('/site/index')),
with the following:

array('label'=>'Projects', 'url'=>array('/project')),

With this replacement, all of our previously outlined changes are in place. If we now
visit the TrackStar application as an anonymous user, we are directed to the login
page. If we click on the Projects link, we are still directed to the login page. We can
still access the About and Contact pages, which is fine for an anonymous user. If
we log in, we are directed to the project listing page. Now if we click on the Projects
link, we are allowed to see the project listings.

Creating a breadcrumb navigation
Turning back to our main.php layout file, the three lines of code that follow our
menu widget define another Zii extension widget called CBreadcrumbs:

<?php $this->widget('zii.widgets.CBreadcrumbs', array(
 'links'=>$this->breadcrumbs,
)); ?><!-- breadcrumbs -->

This is another Zii widget that can be used to display a list of links indicating
the position of the current page, relative to the other pages in the whole website.
For example, a linked navigation list of the format Projects >> Project 1 > > Edit
indicates that the user is viewing an edit page for project number one. This is helpful
for the user to find their way back to where they started, which is a listing of all the
projects, as well as easily see where they are in the website-page hierarchy. This is
why it is referred to as a breadcrumb. Many websites implement this type of UI
navigational component in their design.

To use this widget, we need to configure its links property, which specifies the links
that are to be displayed. The expected value for this property is an array that defines
the breadcrumb path from a starting point, down to the specific page being viewed.
Using our previous example, we could specify the links array as such:

array(
 'Projects'=>array('project/index'),
 'Project 1'=>array('project/view','id'=>1),
 'Edit',
)

Making It Look Good

[236]

The breadcrumbs widget, by default, adds the very top-level Home link
automatically, based on the application configuration setting homeUrl. So what
would be generated from the previous code snippet would be a breadcrumb like
the following:

Home >> Projects >> Project 1 >> Edit

Since we explicitly set our application $homeUrl property to be the project listings
page, our first two links are the same in this case. The code in the layout file sets
the link property to be the $breadcrumbs property of the controller class that is
rendering the view. You can see this explicitly being set in the several view files that
were autogenerated for us when we created our controller files using the Gii code
generation tool. For example, if you take a look at protected/views/project/
update.php, you will see the following code snippet at the very top of that file:

$this->breadcrumbs=array(
 'Projects'=>array('index'),
 $model->name=>array('view','id'=>$model->id),
 'Update',
);

And if we navigate to that page in the website, we will see the following navigational
breadcrumb generated just below the main navigation:

Specifying the content being decorated by the
layout
The next line in the layout file shows where the content of the view file that is being
decorated by this layout file is placed:

<?php echo $content; ?>

This was discussed earlier in the chapter. When you use $this->render() in a
controller class to display a certain view file, the use of a layout file is implied. Part
of what this method does is to place all of the content in the specific view file being
rendered into a special variable called $content, which is then made available
to the layout file. So if we take our project update view file as an example again,
the contents of $content would be the rendered content contained in the file
protected/views/project/update.php.

Chapter 10

[237]

Defining the footer
Just as with the header area, it is often the case that websites are designed to have
consistent footer content repeated across many pages. The final few lines of our
main.php layout file define a consistent footer for every page:

<div id="footer">
 Copyright © <?php echo date('Y'); ?> by My Company.

 All Rights Reserved.

 <?php echo Yii::powered(); ?>
</div><!-- footer -->

Nothing special going on here, but we should go ahead and update it to reflect our
specific website. We can leave the Powered by Yii Framework. line in there to help
promote this great framework. We can simply change My Company in the previous
code snippet to TrackStar and we're done. Refreshing the pages in the website will
now reveal our footer as depicted in the following screenshot:

Nesting the layouts
Though it is true that the original layout we have been seeing on our pages is
utilizing the file protected/layouts/main.php, this is not the whole story. When
our initial application was created, all of the controllers were created to extend from
the base controller located at protected/components/Controller.php. If we take
a peek into this file, we see that there is a layout property explicitly defined. But
it does not specify the main layout file. Rather it specifies column1 as the default
layout file for all the child classes. You may have already noticed that when the new
application was created, there were a few layout files generated for us as well, all in
the protected/views/layouts/ directory:

•	 column1.php

•	 column2.php

•	 main.php

So unless explicitly overridden in a child class, our controllers are defining column1.
php as the primary layout file and not main.php.

Making It Look Good

[238]

So why did we spend all that time going through main.php, you ask? Well it turns
out that the column1.php layout file is itself decorated by the main.php layout
file. So not only can normal view files be decorated by layout files, but layout files
themselves can be decorated by other layout files forming a hierarchy of nested
layout files. This allows for great flexibility in design and also greatly minimizes the
need for any repeated markup in the view files. Let's take a closer look at column1.
php to see how this is achieved.

The contents of that file are as follows:

<?php $this->beginContent('//layouts/main'); ?>
<div id="content">
 <?php echo $content; ?>
</div><!-- content -->
<?php $this->endContent(); ?>

Here we see the use of a couple of methods that we have not seen before. The
base controller methods beginContent() and endContent() are being used to
decorate the enclosed content with the specified view. The view being specified
here is our main layout page '//layouts/main'. The beginContent() method
actually makes use of the built-in Yii widget CContentDecorator, whose primary
purpose is to allow for nested layouts. So whatever content is between the calls
beginContent() and endContent() will be decorated with the view specified in the
call beginContent(). If nothing is specified, it will use the default layout specified at
the controller level, or if not specified at the controller level, at the application level.

In the preceding code snippet, we see the view file being specified with
double slashes '//'. In this case, the view will be searched for under the
application's view path rather than in the currently active modules view
path. This forces it to use the main application view path rather than the
module's view path. Modules are the subject of the next chapter.

The rest works just as a normal layout file. All of the markup in the specific view
file will be contained in the variable $content when this column1.php layout file is
rendered, and then the other markup contained in this layout file will be contained
again in the variable $content made available for the final rendering of the main
parent layout file main.php.

Let's walk through an example. Take the rendering of the login view as an example,
that is the following code in the SiteController::actionLogin() method:

$this->render('login');

Chapter 10

[239]

Behind the scenes the following steps are being performed:

1.	 Render all of the content in the specific view file /protected/views/site/
login.php, and make that content available via the variable $content to the
layout file specified in the controller, which in this case is column1.php.

2.	 Since column1.php is itself being decorated by the layout main.php, the content
between the beingContent() and endContent() calls is again rendered and
made available to the main.php file, again via the $content variable.

3.	 The layout file main.php is rendered and returned back to the user,
incorporating both the content from the specific view file for the login page
as well as the "nested" layout file column1.php.

Another layout file that was autogenerated when we initially created the application
is column2.php. You probably won't be surprised to discover that this file lays out a
two-column design. We can see this used in the project pages where we have a little
submenu Operations widget displayed along the right-hand side. The contents of
this layout are as follows, and we can see that the same approach is being used to
achieve the nested layout as well:

<?php $this->beginContent('//layouts/main'); ?>
<div class="span-19">
 <div id="content">
 <?php echo $content; ?>
 </div><!-- content -->
</div>
<div class="span-5 last">
 <div id="sidebar">
 <?php
 $this->beginWidget('zii.widgets.CPortlet', array(
 'title'=>'Operations',
));
 $this->widget('zii.widgets.CMenu', array(
 'items'=>$this->menu,
 'htmlOptions'=>array('class'=>'operations'),
));
 $this->endWidget();
 ?>
 </div><!-- sidebar -->
</div>
<?php $this->endContent(); ?>

Making It Look Good

[240]

Creating themes
Themes provide a systematic way of customizing the design layout of a web
application. One of the many benefits of an MVC architecture is the separation of
the presentation from the rest of the "backend" stuff. Themes make great use of this
separation by allowing you to easily and dramatically change the overall look and
feel of a web application during runtime. Yii allows for an extremely easy application
of themes to provide greater flexibility in your web application design.

Building themes in Yii
In Yii, each theme is represented as a directory consisting of view files, layout
files, and relevant resource files, such as images, CSS files, and JavaScript files. The
name of a theme is the same as its directory name. By default, all themes reside
under the same directory WebRoot/themes. Of course, as is the case with all other
application settings, this default directory can be configured to be a different one.
To do so, simply alter the basePath properties and the baseUrl properties of the
themeManager application component.

Contents under a theme directory should be organized in the same way as those
under the application base path. So all the view files are located under a views/
directory, layout view files under views/layouts/, and system view files under
views/system/. For example, if we have created a new theme called custom and
want to replace the update view of our ProjectController with a new view
under this theme, we need to create a new update.php view file and save it in our
application project as themes/custom/views/project/update.php.

Creating a theme
Let's take this for a spin to give our TrackStar application a little facelift. We need to
name our new theme and create a directory under the Webroot/themes directory
with this same name. We'll exercise our extreme creativity and call our new theme
newtheme.

Create a new directory to hold this new theme that is located at Webroot/themes/
newtheme. Then under this newly created directory, create two other new directories
called css/ and views/. The former is not required by the theming system but
helps us keep our CSS organized. The latter is required if we are going to make any
alterations to our default view files, which we are. Since we are going to change the
main.php layout file just a little, we need yet another directory under this newly
created views/ directory called layouts/ (remember that the directory structure
needs to mirror that in the default Webroot/protected/views/ directory).

Chapter 10

[241]

Now let's make some changes. Since our view file markup is already referencing the
css class and id names currently defined in the Webroot/css/main.css file, the
fastest path to a new face of the application is to use this as a starting point and make
changes to it as needed. Of course this is not a requirement, as we could recreate
every single view file of our application in the new theme. However to keep things
simple, we'll create our new theme by making a few changes to the main.css file that
was autogenerated for us when we created the application, as well as the primary
layout file main.php.

To begin with, let's make a copy of these two files and place them in our new theme
directory. Copy the file Webroot/css/main.css to a new location Webroot/themes/
newtheme/css/main.css, and also copy the file Webroot/protected/views/
layouts/main.php to a new location Webroot/themes/newtheme/views/layouts/
main.php.

Now we can open up the newly copied version of the main.css file, remove the
contents, and add in the necessary styles for our new theme. For the purpose of our
example, we will use the CSS available from the downloadable code for this chapter,
or the standalone file available at https://gist.github.com/3779729.

You may have noticed that some of these changes are referencing the image files that
do not yet exist in our project. We have added an images/background.gif image
reference in the body declaration, a new images/bg2.gif image is referenced in the
#mainmenu ID declaration, and a new images/header.jpg image in the #header ID
declaration. These are available in the downloadable source code. We'll place these
new images into an image directory within the css/ directory, namely Webroot/
themes/newtheme/css/images/.

After these changes are in place, we need to make a couple of small adjustments to
our main.php layout file in this new theme. For one, we need to alter the markup
in the <head> element to properly reference our new main.css file. Currently the
main.css file is being pulled in via this line:

<link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>request->baseUrl; ?>/css/main.css" />

Making It Look Good

[242]

This references the application request baseUrl property to construct the relative
path to the CSS file. However, we want to use our new main.css file located in our
new theme. For this, we can lean on the theme manager application component
defined by default to use the Yii built-in CThemeManager.php class. We access the
theme manager in the same way that we access other application components. So
rather than using the request base URL, we should use the base URL defined by the
theme manager, which knows what theme the application is using at any given time.
Alter the previously mentioned code in /themes/newtheme/views/layouts/main.
php, as follows:

<link rel="stylesheet" type="text/css" href="<?php echo Yii::app()-
>theme->baseUrl; ?>/css/main.css" />

Once we configure our application to use our new theme (something we have
not yet done), this baseUrl will resolve to the relative path to where our theme
directory resides.

The other small change that we need to make is to remove the display of the
application title from the header. Since we altered our CSS to use a new image file to
provide our header and logo information, we don't need to display the application
name in this section. So in /themes/newtheme/views/layouts/main.php again, we
simply need to change the following code:

<div id="header">
 <div id="logo"><?php echo CHtml::encode(Yii::app()->name); ?></div>
</div><!-- header -->

Alter the previous code as follows:

<div id="header"></div><!-- header image is embedded into the #header
declaration in main.css -->

We have put in a comment to remind us where our header image is defined.

Now once we configure the application to use our new theme, it will first look for a
main.php layout in the themes directory and use that file if it exists.

Configuring the application to use a theme
Okay, with our newtheme theme that we now created and have in place, we need
to tell the application to use this theme. Doing so is very easy. Just alter the main
application's theme property setting by changing the main application configuration
file. By now we will have become old pros at doing this. Simply add the following
name=>value pair to the returned array in the /protected/config/main.php file:

'theme'=>'newtheme',

Chapter 10

[243]

Once this is saved, our application is now using our newly created theme and has
a brand new face. When we take a look at the login page, which is also our default
home page if not logged in, we now see what is depicted in the following screenshot:

This, of course, is not a huge change. We have kept the changes fairly minimal, but
they do illustrate the process of creating a new theme. The application will first look
for view files in this new theme and use them if they exist, otherwise it will pull them
from the default location. You see how easy it is to give the application a new look
and feel. You could create a new theme for each season or based on your different
moods, and then change the application to fit the season or mood quickly and easily,
as desired.

Making It Look Good

[244]

Translating the site to other languages
Before we close this chapter, we are going to talk about internationalization (i18n)
and localization (l10n) in Yii. Internationalization refers to the process of designing
software applications in such a manner that they can be adapted to various
languages without having to make underlying engineering changes. Localization
refers to the process of adapting internationalized software applications for a specific
geographic location or language, by adding locale-dependent formatting and
translating text. Yii provides support for these in the following ways:

•	 It provides the locale data for nearly every language and region
•	 It provides services to assist in the translation of text message strings

and files
•	 It provides locale-dependent date and time formatting
•	 It provides locale-dependent number formatting

Defining locale and language
Locale refers to a set of parameters that define the user's language, country, and
any other user-interface preferences that may be relevant to a user's location. It is
typically identified by a composite ID consisting of a language identifier and a region
identifier. For example, a locale ID of en_us stands for the English language in the
region of the United States. For consistency, all locale IDs in Yii are standardized
to the format of either LanguageID or LanguageID_RegionID in lowercase (for
example, en or en_us).

In Yii, locale data is represented as an instance of the CLocale class or a child
class thereof. It provides locale-specific information including currency and
numeric symbols for currency, number, date, and time formats, and date-related
names such as months, days of the week, and others. Given a locale ID, one
can get the corresponding CLocale instance by either using the static method
CLocale::getInstance($localeID) or using the application. The following
example code creates a new instance based on the en_us locale identifier using the
application component:

Yii::app()->getLocale('en_us');

http://en.wikipedia.org/wiki/Locale

Chapter 10

[245]

Yii comes with locale data for nearly every language and region. The data comes
from the Common Locale Data Repository (http://cldr.unicode.org/), and is
stored in files that are named according to their respective locale ID, and located in
the Yii framework directory framework/i18n/data/. So in the previous example of
creating a new CLocale instance, the data used to populate the attributes came from
the file framework/i18n/data/en_us.php. If you look under this directory, you will
see datafiles for many languages and regions.

Going back to our example, if we wanted to get the names of the months in English
that is specific to the US region, we could execute the following code:

$locale = Yii::app()->getLocale('en_us');
print_r($locale->monthNames);

The output of which would produce the following:

If we wanted the same month names for the Italian language, we could do the same
but create a different CLocale instance:

$locale = Yii::app()->getLocale('it');
print_r($locale->monthNames);

Now our output would produce the following:

The first instance is based on the data file framework/i18n/data/en_us.php
and the latter on framework/i18n/data/it.php. If desired, the application's
localeDataPath property can be configured in order to specify a custom directory
in which you can add your custom locale data files.

Performing language translation
Perhaps the most desired feature of i18n is language translation. As mentioned
previously, Yii provides both message translation and view file translation. The
former translates a single text message to a desired language, and the latter translates
an entire file to the desired language.

http://cldr.unicode.org/

Making It Look Good

[246]

A translation request consists of the object that is to be translated (either a string of
text or a file), the source language that the object is in, and the target language to
which the object is to be translated. A Yii application makes a distinction between
its target language and its source language. The target language is the language
(or locale) that we are targeting for the user, whereas the source language refers
to the language in which the application files are written. So far, our TrackStar
application has been written in English and is also targeted for users of the English
language. Our target and source languages thus far have been the same. The
internationalization features of Yii, which include translation, are only applicable
when these two languages are different.

Performing message translation
Message translation is performed by calling the following application method:

Yii::t(string $category, string $message, array $params=array (),
string $source=NULL, string $language=NULL)

This method translates the message from the source language to the target language.

When translating a message, the category must be specified to allow a message to
be translated differently under different categories (contexts). The category Yii is
reserved for the messages used by the Yii framework core code.

Messages can also contain parameter placeholders that will be replaced with the
actual parameter values upon calling Yii::t(). The following example depicts the
translation of an error message. This message translation request would replace the
{errorCode} placeholder in the original message with the actual $errorCode value:

Yii::t('category', 'The error: "{errorCode}" was encountered during
the last request.', array('{errorCode}'=>$errorCode));

The translated messages are stored in a repository called message source. A message
source is represented as an instance of CMessageSource or a child class thereof.
When Yii::t() is invoked, it will look for the message in the message source and
return its translated version if it is found.

Chapter 10

[247]

Yii comes with the following types of message sources:

•	 CPhpMessageSource: This is the default message source. The message
translations are stored as key-value pairs in a PHP array. The original
message is the key and the translated message is the value. Each array
represents the translations for a particular category of messages, and is
stored in a separate PHP script file whose name is the category name. The
PHP translation files for the same language are stored under the same
directory named as the locale ID. And all these directories are located under
the directory specified by basePath.

•	 CGettextMessageSource: The message translations are stored as
GNU Gettext files.

•	 CDbMessageSource: The message translations are stored in database tables.

A message source is loaded as an application component. Yii predeclares an
application component named messages to store the messages that are used in a user
application. By default, the type of this message source is CPhpMessageSource and
the base path for storing the PHP translation files is protected/messages.

An example will go a long way to help bring all of this together. Let's translate
the form field labels on our Login form into a fictitious language that we'll call
Reversish. Reversish is written by taking an English word or phrase and writing it
in reverse. So here are the Reversish translations of our login form field labels:

English Reversish
Username Emanresu
Password Drowssap
Remember me next time Emit txen em rebmemer

We'll use the default CPhpMessageSource implementation to house our message
translations. So the first thing we need to do is create a PHP file containing our
translations. We'll make the locale ID rev, and we'll just call the category default
for now. We need to create a new file under the messages base directory that follows
the format /localeID/CategoryName.php. So we need to create a new file located
at /protected/messages/rev/default.php and then add the following translation
array to this file:

<?php
return array(
 'Username' => 'Emanresu',
 'Password' => 'Drowssap',
 'Remember me next time' => 'Emit txen em rebmemer',
);

Making It Look Good

[248]

Next we need to set the application target language to be Reversish. We can do this
in the application configuration file so that it will impact the entire site. Simply add
the following name=>value pair to the returned array in the /protected/config/
main.php file:

'language'=>'rev',

Now the last thing we need to do is to make our calls to Yii::t() so that our login
form field labels are sent through the translation. These form field labels are defined
in the LoginForm::attributeLabels() method. Replace that entire method with
the following code:

/**
 * Declares attribute labels.
 */
 public function attributeLabels()
 {
 return array(
 'rememberMe'=>Yii::t('default','Remember me next time'),
 'username'=>Yii::t('default', 'Username'),
 'password'=>Yii::t('default', 'Password'),
);
 }

Now if we visit our Login form again, we see a new Reversish version as depicted in
the following screenshot:

Chapter 10

[249]

Performing file translation
Yii also provides the ability to use different files based on the target locale ID setting
of the application. File translation is accomplished by calling the application method
CApplication::findLocalizedFile(). This method takes in the path to a file and
will look for that file with the same name, but under a directory that has been named
with the same name as the target locale ID. The target locale ID is specified either as an
explicit input to the method or as what is specified in the application configuration.

Let's try this out. All we really need to do is create the appropriate translation file.
We'll stick with translating the login form. So we create a new view file /protected/
views/site/rev/login.php and then add our translated content. Again, this is too
long to list in its entirety, but you can view this in the downloadable code files or the
standalone content at https://gist.github.com/3779850.

We are already setting the target language for the application in the main
configuration file, and the call to get the localized file will be taken care of for us
behind the scenes when calling render('login'). So with this file in place, our
login form now looks as shown in the following screenshot:

Making It Look Good

[250]

Summary
In this chapter, we have seen how a Yii application allows you to quickly and easily
polish up the design. We were introduced to the concept of layout files, and walked
through how to use these in an application to lay out content and design that needs
to be implemented in a similar manner across many different web pages. This also
introduced us to the CMenu and CBreadcrumbs built-in widgets that provide very
easy to use UI navigational constructs on each page.

We then introduced the idea of a theme within web applications and how you
can create them in Yii. We saw that themes allow you to easily put a new face on
an existing web application, and allow you to redesign your application without
rebuilding any of the functionality or "backend".

Finally, we looked at changing the face of the application through the lens of i18n
and language translation. We learned how to set the target locale of the application
to enable localization settings and language translations.

We have made a few references in this and past chapters to "modules", but have yet
to dive into what exactly these are within a Yii application. That is going to be the
focus of the next chapter.

Using Yii Modules
So far we have added a lot of functionality to our TrackStar application. And if you
recall back to Chapter 7, User Access Control, we introduced user access controls to
restrict certain functionalities based on a user role hierarchy. This was very helpful
in restricting access to some of the administrative functions on a per project basis.
For example, within a specific project, you may not want to allow all the members of
the team to delete the project. We used a role based access control implementation to
assign users to specific roles within a project, and then allowed/restricted access to
the functionality based on these roles.

However, what we have not yet addressed are the administrative needs of the
application as a whole. Web applications such as TrackStar often require very
special users who have the ability to have full access to administer everything. One
example is the ability to manage all the CRUD operations for every single user of
the system, regardless of the project. A full administrator of our application should
be able to log in and remove or update any user, any project, any issue, moderate
all comments, and so on. Also, it is often the case that we build extra features
that apply to the whole application, such as the ability to leave site-wide system
messages to all the users, manage e-mail campaigns, turn on/off certain application
features, manage the roles and permissions hierarchy itself, change the site theme,
and others. Because the functionality exposed to the administrator can differ greatly
from the functionality exposed to normal users, it is often a good idea to keep these
features very separate from the rest of the application. We will be accomplishing
this separation by building all of our administrative functionality in what is called a
module in Yii.

Using Yii Modules

[252]

Feature planning
In this chapter we will focus on the following granular development tasks:

•	 Creating a new module to house administrative functionality
•	 Creating the ability for administrators to add system-wide messages for

application users, to view on the projects listing page
•	 Applying a new theme to the module
•	 Creating a new database table to hold the system message data
•	 Generating all CRUD functionality for our system messages
•	 Restricting access to all functionality within the new module to admin users
•	 Displaying new system messages on the projects listing page

Working with modules
A module in Yii is very much like an entire mini-application contained within a larger
application. It has a very similar structure, containing models, views, controllers, and
other supporting components. However, modules cannot be deployed themselves as
standalone applications; they must reside within an application.

Modules are very useful in helping to architect your application in a modular fashion.
Large applications can often be segmented into discrete application features that could
be built separately using modules. Site features such as adding a user forum or user
blogs, or site-administrator functionality, are some examples that could be segmented
from the main site features, allowing them to be developed separately and having
them be easily reusable in future projects. We are going to use a module to create a
distinct place in our application to house our administrative functionality.

Creating a module
Creating a new module is a snap when using our good friend Gii. With our URL
changes in place, the tool is now accessible via http://localhost/trackstar/gii.
Navigate there and select the Module Generator option in the left-hand side menu.
You will be presented with the following screenshot:

http://localhost/trackstar/gii

Chapter 11

[253]

We need to provide a unique name for the module. Since we are creating an admin
module, we'll be super creative and give it the name admin. Type this in the Module
ID field and click on the Preview button. As shown in the following screenshot,
it will present you with all of the files that it intends to generate, allowing you to
preview each file prior to creating them:

Using Yii Modules

[254]

Click on the Generate button to have it create all of these files. You will need to
ensure that your /protected folder is writable by the web server process for it to
autocreate the necessary directories and files. The following screenshot shows the
successful generation of a module:

Let's take a closer look at what the module generator created for us. A module in Yii
is organized as a directory, the name of which is the same as the unique name of the
module. By default, all module directories reside under protected/modules. The
structure of each module directory is very similar to that of our main application. What
this command has done for us is to create the skeleton of the directory structure for the
admin module. Since this was our first module, the top-level directory protected/
modules was created, and then an admin/ directory was created underneath it. The
following screenshot shows all of the directories and files that were created when we
executed the module command:

Chapter 11

[255]

A module must have a module class that extends either directly or from a child
of CWebModule. The module class name is created by combining the module ID
(that is, the name we supplied when we created the module admin) and the string
Module. The first letter of the module ID is also capitalized. So in our case, our admin
module class file is named AdminModule.php. The module class serves as the central
place for storing information that is shared within the module code. For example, we
can use the params property of CWebModule to store module-specific parameters, and
use its components property to share application components at the module level.
This module class serves a similar role to the module as the application class does to
the entire application. So CWebModule is to our module what CWebApplication is to
our application.

Using a module
Just as the successful creation message indicated, before we can use our new module,
we need to configure the modules property of the main application to include it for
use. We did this before when we added the gii module to our application, which
allowed us to access the Gii code generation tool. We make this change in the main
configuration file protected/config/main.php. The following highlighted code
indicates the necessary change:

'modules'=>array(
 'gii'=>array(
 'class'=>'system.gii.GiiModule',
 'password'=>'iamadmin',
),
 'admin',
),

Using Yii Modules

[256]

After saving this change, our new admin module is wired up for use. We can take a
look at the simple index page that was created for us by visiting http://localhost/
trackstar/admin/default/index. The request-routing structure for accessing the
pages in our module is just like that for our main application pages, except that we
need to include the moduleID directory in the route as well. Our routes will be of the
general form /moduleID/controllerID/actionID. So the URL request /admin/
default/index is requesting the admin module's default controller's index method.
When we visit this page, we see something similar to the following screenshot:

Module layout
One thing we will notice is that the theme we created in the previous chapter,
newtheme, is also being applied to our module. The reason for this is that our module
controller classes are extending protected/components/Controller.php, which
specifies its layout as $layout='//layouts/column1'. The key is the double slashes
in front of this definition. This specifies that we use the main application path rather
than the specific module path for finding the layout file. So we are getting the same
layout file applied to our module as we are to the rest of our application. If we make
this a single slash rather than double, we would see our admin module having no
layout applied to it at all. Go ahead and give it a try. The reason for this is that now,
with just the single slash, that is, $layout='/layouts/column1', it is looking for
layout files within the module rather than the parent application. Please go ahead
and make this change, and keep the single slash definition as we proceed.

Chapter 11

[257]

You can configure almost everything separately in a module, including the default
path for layout files. The default layout path for web modules is /protected/
modules/[moduleID]/views/layouts, where [moduleID] in our case is admin. We
can see that there are no files under this directory, so there is no default layout to be
applied to the module.

Since we have a theme specified, there is slightly more to the story in our case. We
can also manage all of our module view files, including the module layout view files,
within this theme. If we were to do that, we'd need to add to our theme directory
structure to accommodate our new module. The directory structure is very much
as expected. It is of a general form /themes/[themeName]/views/[moduleID]/
layouts/ for the layout files and /themes/[themeName]/views/[moduleID]/
[controllerID]/ for the controller view files.

To help clarify this, let's walk through Yii's decision making process when it is trying
to decide what view files to use for our new admin module. As mentioned earlier, if
we specify the layout view file with double slashes preceding it ("//"), it will look to
the parent application to find the layout file. But let's look at the case where we use
a single slash and ask it to find the appropriate layout file within the module. In the
single slash scenario, here is what is happening when $this->render('index') is
issued in the DefaultController.php file within our admin module:

1.	 Since render()is being called, as opposed to renderPartial(), it is going
to attempt to decorate the specified index.php view file with a layout file.
And since our application is currently configured to use a theme called
newtheme, it is going to first look for layout files under this theme directory.
Our new module's DefaultController class extends our application
component Controller.php, which has column1 specified as its $layout
property. This property is not overridden, so it is also the layout file for
DefaultController. Finally, since this is all happening within the admin
module, Yii first looks for the following layout file:
/themes/newtheme/views/admin/layouts/column1.php

(Note the inclusion of the moduleID in this directory structure.)

2.	 This file does not exist, so it reverts to looking in the default location for the
module. As previously mentioned, the default layout directory is specific to
each module. So in this case it will attempt to locate the following layout file:
/protected/modules/admin/views/layouts/column1.php

Using Yii Modules

[258]

3.	 This file also does not exist, so it will be unable to apply a layout. It will now
simply attempt to render the specified index.php view file without a layout.
However, again since we have specified the specific newtheme theme for this
application, it will first look for the following view file:
/themes/newtheme/views/admin/default/index.php

4.	 This file also does not exist, so it will look again for this controller
(DefaultController.php) in the default location within this module
(AdminModule), namely /protected/modules/admin/views/default/
index.php.

This explains why the page http://localhost/trackstar/admin/default/index
is rendered without any layout (again, in the case where we are using a single slash
to prefix the layout file declaration $layout='/layouts/column1'). To keep things
completely separate and simple for now, let's manage our view files in the default
location for our module rather than under the newtheme theme. Also, let's apply to
our admin module the same design as our original application had, that is, how the
application looked before we applied the new theme. In this way, our admin pages
will have a very different look from our normal application pages, which will help
remind us that we are in the special admin section, but we won't have to spend any
time coming up with a new design.

Applying a layout
First let's set a default layout value for our module. We set our module-wide
configuration settings in the init() method within our module class /protected/
modules/AdminModule.php. So open up that file and add the following
highlighted code:

class AdminModule extends CWebModule
{
 public function init()
 {
 // this method is called when the module is being created
 // you may place code here to customize the module or the
application

 // import the module-level models and components
 $this->setImport(array(
 'admin.models.*',
 'admin.components.*',
));

 $this->layout = 'main';

 }

Chapter 11

[259]

In this way, if we have not specified a layout file at a more granular level, such as in
a controller class, all of the module views will be decorated by the layout file main.
php located in the default layout directory for our module, namely /protected/
modules/admin/views/layouts/.

Now of course, we need to create this file. Make a copy of the two layout files /
protected/views/layouts/main.php and /protected/views/layouts/column1.
php from the main application, and place them both in the /protected/modules/
admin/views/layouts/ directory. After you have copied these files over to the new
location, we need to make a few small changes to both of them.

First let's alter column1.php. Remove the explicit reference to //layouts/main in the
call beginContent():

<?php $this->beginContent(); ?>
<div id="content">
 <?php echo $content; ?>
</div><!-- content -->
<?php $this->endContent(); ?>

Not specifying an input file when calling beginContent() will result in it using the
default layout for our module, which we just set to be our newly copied main.php file.

Now let's make a few changes to our main.php layout file. We are going to add
Admin Console to our application header text to emphasize that we are in a separate
part of the application. We will also alter our menu items to have a link to the Admin
home page, as well as a link to go back to the main site. We can remove the About
and Contact links from this menu as we don't need to repeat those options in our
Admin section. The additions to the file are highlighted as follows:

...
<div class="container" id="page">

 <div id="header">
 <div id="logo"><?php echo CHtml::encode(Yii::app()->name) . "
Admin Console"; ?></div>
 </div><!-- header -->

 <div id="mainmenu">
 <?php $this->widget('zii.widgets.CMenu',array(
 'items'=>array(
 array('label'=>'Back To Main Site', 'url'=>array('/project')),
 array('label'=>'Admin', 'url'=>array('/admin/default/index')),
 array('label'=>'Login', 'url'=>array('/site/login'),
'visible'=>Yii::app()->user->isGuest),

Using Yii Modules

[260]

 array('label'=>'Logout ('.Yii::app()->user->name.')',
'url'=>array('/site/logout'), 'visible'=>!Yii::app()->user->isGuest)
),
)); ?>
 </div><!-- mainmenu -->

We can leave the rest of the file unchanged. Now if we visit our admin module page
http://localhost/trackstar/admin/default/index, we see something like the
following screenshot:

And if we click on the Back To Main Site link, we see that we are taken back to the
newly themed version of our main application.

Restricting admin access
One problem you may have already noticed is that anyone, including guest users,
can access our new admin module. We are building this admin module to expose
application functionality that should only be accessible to users with administrative
access. So we need to address this issue.

Luckily, we have already implemented an RBAC access model in our application,
back in Chapter 7, User Access Control. All we need to do now is extend it to include a
new role for administrators and have new permissions available for that role.

Chapter 11

[261]

If you recall from Chapter 7, User Access Control , we used a Yii console command
to implement our RBAC structure. We need to add to that. So open up the file /
protected/commands/shell/RbacCommand.php containing that console command,
and add the following code where we created the owner role:

//create a general task-level permission for admins
 $this->_authManager->createTask("adminManagement", "access to the
application administration functionality");
 //create the site admin role, and add the appropriate permissions
$role=$this->_authManager->createRole("admin");
$role->addChild("owner");
$role->addChild("reader");
$role->addChild("member");
$role->addChild("adminManagement");
//ensure we have one admin in the system (force it to be user id #1)
$this->_authManager->assign("admin",1);

This creates a new task called adminManagement and a new role called admin. It then
adds the owner, reader, and member roles along with the adminManagement task
as children, so that the admin role inherits permissions from all of these. Finally, it
assigns the admin role to the first user in our system to ensure that we have at least
one admin to access our admin module.

Now we have to rerun our command to update the database with these changes. To
do so, just run the yiic command-line tool with the rbac command:

% cd Webroot/trackstar/protected

% ./yiic rbac

With this additional role being added, we should also update the
text in the message that is displayed when prompted, to continue
to indicate that a fourth role will be created. We will leave this
as an exercise for the reader. This change has been made in the
downloadable code files for your reference.

With these changes to our RBAC model in place, we can add an access check to the
AdminModule::beforeControllerAction() method so that nothing within the
admin module will be executed unless the user is in the admin role:

public function beforeControllerAction($controller, $action)
{
 if(parent::beforeControllerAction($controller, $action))
 {
 // this method is called before any module controller action is
performed

Using Yii Modules

[262]

 // you may place customized code here
 if(!Yii::app()->user->checkAccess("admin"))
 {
 throw new CHttpException(403,Yii::t('application','You are
not authorized to perform this action.'));
 }
 return true;
 }
 else
 return false;
}

With this in place, if a user who has not been assigned the admin role now attempts
to visit any page within the Admin module, they will receive an HTTP 403
authorization error page. For example, if you are not logged in and you attempt to
visit the Admin page, you will receive the following result:

And the same holds true for any user that has not been assigned to the admin role.

Now we can conditionally add a link to the Admin section of the site to our main
application menu. In this way, users with administrative access won't have to
remember a cumbersome URL to navigate to the Admin console. As a reminder,
our main application menu is located in our application's theme default application
layout file /themes/newtheme/views/layouts/main.php. Open up that file and
add the following highlighted code to the menu section:

<div id="mainmenu">
 <?php $this->widget('zii.widgets.CMenu',array(
 'items'=>array(

Chapter 11

[263]

 array('label'=>'Projects', 'url'=>array('/project')),
 array('label'=>'About', 'url'=>array('/site/page',
'view'=>'about')),
 array('label'=>'Contact', 'url'=>array('/site/contact')),
 array('label'=>'Admin', 'url'=>array('/admin/default/index'),
'visible'=>Yii::app()->user->checkAccess("admin")),
 array('label'=>'Login', 'url'=>array('/site/login'),
'visible'=>Yii::app()->user->isGuest),
 array('label'=>'Logout ('.Yii::app()->user->name.')',
'url'=>array('/site/logout'), 'visible'=>!Yii::app()->user->isGuest)
),
)); ?>
</div><!-- mainmenu -->

Now upon logging into the application as a user with admin access (we set this to be
user id = 1, "User One" in our case), we will see a new link in our top navigation
that will take us to our newly added Admin section of the site.

Adding a system-wide message
A module can be thought of as a mini-application itself, and adding functionality to a
module is really the same process as adding functionality to the main application. Let's
add some new functionality just for administrators; we will add the ability to manage
system-wide messages displayed to users when they first log in to the application.

Using Yii Modules

[264]

Creating the database table
As is often the case with brand new functionality, we need a place to house our data.
We need to create a new table to store our system-wide messages. For the purpose of
our examples, we can keep this very simple. Here is the definition for our table:

CREATE TABLE `tbl_sys_message`
(
 `id` INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,
 `message` TEXT NOT NULL,
 `create_time` DATETIME,
 `create_user_id` INTEGER,
 `update_time` DATETIME,
 `update_user_id` INTEGER
)

We'll of course create a new database migration to manage our changes when adding
this new table.

% cd Webroot/trackstar/protected

% ./yiic migrate create_system_messages_table

These commands create a new migration file under the protected/migrations/
directory. The contents of this file can be obtained from the downloadable code or the
standalone code snippet that is available at https://gist.github.com/3785282.
(We did not include the class name; remember that the name of your file and
corresponding class will have a different timestamp prefix.)

Once this file is in place, we can run our migration to add this new table:

% cd Webroot/trackstar/protected

% ./yiic migrate

Chapter 11

[265]

Creating our model and CRUD scaffolding
Now that we have our table created, our next step is to generate the model class
using our favorite tool, the Gii code generator. We'll first use the Model Generator
option to create the model class and the Crud Generator option to create our basic
scaffolding to quickly interact with this model. Go ahead and navigate to the Gii tool
form for creating a new model (http://localhost/trackstar/gii/model). This
time, since we are doing this within the context of a module, we need to explicitly
specify the model path. Fill out the form with the values depicted in the following
screenshot (though of course your Code Template path value should be specific to
your local setup):

Note that we changed the Model Path textbox to application.modules.admin.
models. Go ahead and generate the Model Class value by clicking on the
Generate button.

Using Yii Modules

[266]

Now we can create the CRUD scaffolding in much the same way. Again, the only
real difference between what we have done previously and what we are doing now
is our specification that the location of the model class is in the admin module. After
choosing the Crud Generator option from the Gii tool, fill out the Model Class and
Controller ID form fields as shown in the following screenshot:

This alerts the tool to the fact that our model class is under the admin module, and
that our controller class as well as all other files related to this code generation
should be placed within the admin module as well.

Complete the creation by first clicking on the Preview button and then on Generate.
The following screenshot shows a list of all of the files that are created by this action:

Chapter 11

[267]

Adding a link to our new functionality
Let's add a new menu item within the main admin module navigation that links to
our newly created message functionality. Open up the file /protected/modules/
admin/views/layouts/main.php that contains the main menu navigation for our
module, and add the following array item to the menu widget:

array('label'=>'System Messages', 'url'=>array('/admin/sysMessage/
index')),

If we take a look at our page for creating a new system message at
http://localhost/trackstar/admin/sysMessage/create, we see
the following:

The autocreated controller and view files for our new system message functionality
were created to use the two-column layout file from the main application. If you
take a look inside the SysMessageController.php class file, you will see the layout
defined as such:

public $layout='//layouts/column2';

http://localhost/trackstar/admin/systemMessage/create
http://localhost/trackstar/admin/systemMessage/create

Using Yii Modules

[268]

Notice the double slashes in front. So we can see that our newly added admin
functionality is not using our admin module layout files. We could alter the
controller class to use our existing, single-column layout file in the admin module,
or we can add a two-column layout file to our module layout files. The latter is
going to be slightly easier and will also look better, as all of the view files are created
to have their submenu items (that is the links to all the CRUD functionality) be
displayed in a second right-hand column. We also need to alter our newly created
model class and corresponding form to remove some unneeded form fields. The
following is all that we have to do:

1.	 Copy the two-column layout from our main application over to our
module, that is, copy /protected/views/layouts/column2.php over to /
protected/modules/admin/views/layouts/column2.php.

2.	 Remove //layouts/main as the input to the beginContent() method call
on the first line, in the newly copied column2.php file.

3.	 Alter the SysMessage model class to extend TrackstarActiveRecord. (If
you recall, this adds the code to automatically update our create_time/
user and update_time/user properties.)

4.	 Alter the SysMessageController controller class to use the new column2.php
layout file from within the module directory and not the one from the main
application. The autogenerated code has specified $layout='//layouts/
column2', but we need this to simply be $layout='/layouts/column2'.

5.	 Since we are extending TrackstarActiveRecord, we can remove the
unnecessary fields from our autogenerated, sys-messages creation form
and remove their associated rules from the model class. For example,
remove the following form fields from the modules/admin/views/
sysMessage/_form.php:
<div class="row">
 <?php echo $form->labelEx($model,'create_time'); ?>
 <?php echo $form->textField($model,'create_time'); ?>
 <?php echo $form->error($model,'create_time'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'create_user_id'); ?>
 <?php echo $form->textField($model,'create_user_id'); ?>
 <?php echo $form->error($model,'create_user_id'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'update_time'); ?>
 <?php echo $form->textField($model,'update_time'); ?>

Chapter 11

[269]

 <?php echo $form->error($model,'update_time'); ?>
 </div>

 <div class="row">
 <?php echo $form->labelEx($model,'update_user_id'); ?>
 <?php echo $form->textField($model,'update_user_id'); ?>
 <?php echo $form->error($model,'update_user_id'); ?>
 </div>

6.	 Then change these two rules from the SysMessage::rules() method:
array('create_user, update_user', 'numerical',
'integerOnly'=>true), and array('create_time, update_time',
'safe'),

It is important to only specify the rules for those fields that the user can input. Any
fields that have rules defined can be set in a bulk manner from a POST or GET request,
and leaving in rules for fields you do not want users to have access to can lead to
security issues.

One last change we should make is to update our simple access rules to reflect the
requirement that only the users in the admin role can access our action methods.
This is mostly for illustrative purposes since we already took care of the access using
our RBAC model approach in the AdminModule::beforeControlerAction method
itself. We could actually just remove the accessRules() method entirely. However,
let's update them to reflect the requirement so you can see how that would work
using the access rule approach. In the SysMessageController::accessRules()
method, change the entire content to the following:

public function accessRules()
{
 return array(
 array('allow', // allow only users in the 'admin' role access to
our actions
 'actions'=>array('index','view', 'create', 'update', 'admin',
'delete'),
 'roles'=>array('admin'),
),
 array('deny', // deny all users
 'users'=>array('*'),
),
);
}

Using Yii Modules

[270]

Okay, with all of this in place, if we now access our new message input form by
visiting http://localhost/trackstar/admin/sysMessage/create, we are
presented with something similar to the following screenshot:

Fill out this form with the message Hello Users! This is your admin
speaking... and click on Create. The application will redirect you to the details
listing page for this newly created message, as shown in the following screenshot:

Displaying the message to users
Now that we have a message in our system, let's display it to the user on the
application home page.

http://localhost/trackstar/admin/systemMessage/create

Chapter 11

[271]

Importing the new model class for application-wide
access
In order to access the newly created model from anywhere in our application, we
need to import it as part of the application configuration. Alter protected/config/
main.php to include the new admin module models folder:

// autoloading model and component classes
'import'=>array(
 'application.models.*',
 'application.components.*',
 'application.modules.admin.models.*',
),

Selecting the most recently updated message
We'll restrict the display to just one message, and we'll choose the most recently
updated message based on the update_time column in the table. Since we want to add
this to the main projects listing page, we need to alter the ProjectController::
actionIndex() method. Alter that method by adding the following highlighted code:

public function actionIndex()
 {
 $dataProvider=new CActiveDataProvider('Project');

 Yii::app()->clientScript->registerLinkTag(
 'alternate',
 'application/rss+xml',
 $this->createUrl('comment/feed'));

 //get the latest system message to display based on the update_
time column
 $sysMessage = SysMessage::model()->find(array(
 'order'=>'t.update_time DESC',
));
 if($sysMessage !== null)
 $message = $sysMessage->message;
 else
 $message = null;

 $this->render('index',array(
 'dataProvider'=>$dataProvider,
 'sysMessage'=>$message,
));
 }

Using Yii Modules

[272]

Now we need to alter our view file to display this new bit of content. Add the
following code to views/project/index.php, just above the <h1>Projects</h1>
header text:

<?php if($sysMessage !== null):?>
 <div class="sys-message">
 <?php echo $sysMessage; ?>
 </div>
<?php endif; ?>

Now when we visit our projects listing page (that is our application's homepage), we
can see it displayed as shown in the following screenshot:

Adding a little design tweak
Okay, this does what we wanted it to do, but this message does not really stand out
to the user very well. Let's change that by adding a little snippet to our main CSS file
(/themes/newtheme/css/main.css):

div.sys-message
{
 padding:.8em;
 margin-bottom:1em;
 border:3px solid #ddd;
 background:#9EEFFF;
 color:#FF330A;
 border-color:#00849E;
}

With this in place, our message now really stands out on the page. The following
screenshot shows the message with these changes in place:

Chapter 11

[273]

One might argue that this design tweak went a little too far. Users might get a
headache if they have to stare at those message colors all day. Rather than toning
down the colors, let's use a little JavaScript to fade the message out after 5 seconds.
Since we will be displaying the message every time the user visits this Home page, it
might be nice to prevent them from having to stare at it for too long.

We'll make things easy on ourselves and take advantage of the fact that Yii comes
shipped with the powerful JavaScript framework jQuery. jQuery is an open source,
JavaScript library that simplifies the interaction between the HTML Document
Object Model (the DOM) and JavaScript. It is outside the scope of this book to dive
into the details of jQuery. It is well worth visiting its documentation to become a
little more acquainted with its features. Since Yii comes shipped with jQuery, you
can simply register jQuery code in the view files, and Yii will take care of including
the core jQuery library for you.

We'll also use the application helper component CClientScript to register our
jQuery JavaScript code for us in the resulting web page. It will make sure that it has
been placed in the appropriate place, and has been properly tagged and formatted.

So let's alter what we previously added to include a snippet of JavaScript that will
fade out the message. Replace what we just added to views/project/index.php
with the following:

<?php if($sysMessage != null):?>
 <div class="sys-message">
 <?php echo $sysMessage; ?>
 </div>
<?php
 Yii::app()->clientScript->registerScript(
 'fadeAndHideEffect',
 '$(".sys-message").animate({opacity: 1.0}, 5000).
fadeOut("slow");'
);
endif; ?>

Now if we reload our main projects listing page, we see the message fade out
after 5 seconds. For more information on cool jQuery effects that you can easily
add to your pages, take a look at the JQuery API documentation available at
http://api.jquery.com/category/effects/.

Finally, to convince yourself that everything is working as expected, you can add
another system-wide message. Since this newer message will have a more recent
update_time property, it will be the one to display on the projects listing page.

Using Yii Modules

[274]

Summary
In this chapter, we have introduced the concept of a Yii module, and demonstrated
its practicality by using one to create an administrative section of the site. We
demonstrated how to create a new module, how to change the layout and theme of
a module, how to add application functionality within the module, and even how to
take advantage of an existing RBAC model, to apply authorization access controls
to functionality within a module. We also demonstrated how to use jQuery to add a
dash of UI flare to our application.

With the addition of this administrative interface, we now have all of the major
pieces of the application in place. Though the application is incredibly simple, we
feel it is time to get it ready for production. The next chapter will focus on preparing
our application for production deployment.

Production Readiness
Even though our application lacks a significant amount of feature functionality,
our (albeit imaginary) deadlines are approaching and our (also imaginary) client is
getting anxious about getting the application into a production environment. Even
though it may be some time before our application actually sees the light of day
in production, it is time to get the application "production ready". In this, our final
chapter of development, we are going to do just that.

Feature planning
In order to achieve the goal of preparing our application for a production
environment, we are going to focus on the following granular tasks:

•	 Implement Yii's application logging framework to ensure we are logging
information about critical production errors and events

•	 Implement Yii's application error handling framework to ensure we properly
handle errors in production and understand how this works differently in a
production environment rather than in a development environment

•	 Implement application data caching to help improve performance

Logging
Logging is a topic that should arguably have been covered before this late stage in
the application development. Informational, warning, and severe error messages
are invaluable when it comes to troubleshooting in software applications, and most
certainly for those in a production environment being used by real users.

Production Readiness

[276]

As developers, we are all familiar with this story. You have met all of the functional
requirements of the application you are building. All of the unit and functional
tests are passing. The application has been approved by QA, and everyone feels
great about it being ready for production. But as soon as it goes in and is under real
production load, with real users interacting with it, it behaves unexpectedly. A good
logging strategy could make the difference between a swift resolution and rolling
back weeks or even months of hard work.

Yii provides flexible and extensible logging capabilities. The data logged can be
classified according to log levels and message categories. Using level and category
filters, log messages can be further routed to different destinations, such as written
to files on disc, stored in a database, sent to administrators as emails, or displayed in
browser windows.

Message logging
Our application has actually been logging many informational messages upon each
request the entire time. When the initial application was created it was configured to
be in debug mode and while in this mode, the Yii framework itself logs information
messages. We can't actually see these messages because, by default, they are being
logged to memory. So, they are around only for the lifetime of the request.

Whether or not the application is in this debug mode is controlled by the following
line in the root index.php file:

defined('YII_DEBUG') or define('YII_DEBUG',true);

To see what is being logged, let's whip up a quick little action method in our
SiteController class to display the messages:

public function actionShowLog()
{
 echo "Logged Messages:

";
CVarDumper::dump(Yii::getLogger()->getLogs());
}

Here we are using Yii's CVarDumper helper class, which is an improved version of var_
dump or print_r, due to its ability to properly handle recursive reference objects.

Chapter 12

[277]

If we invoke this action by making the request http://localhost/trackstar/
site/showLog, we see something similar to the following screenshot:

If we comment out our global application debug variable, defined in index.php,
and refresh the page, we'll notice an empty array; that is, nothing was logged. This
is because this system-level debugging information level logging is accomplished
by calling Yii::trace, which only logs these messages if the application is in this
special debug mode.

We can log messages in a Yii application using one of two static application methods:

•	 Yii::log($message, $level, $category);

•	 Yii::trace($message, $category);

As mentioned, the main difference between these two methods is that Yii::trace
logs the message only when the application is in debug mode.

Categories and levels
When logging a message using Yii::log(), we need to specify its category and
level. Category is a string and is used to provide extra context to the message being
logged. This string can be anything you like, but a convention that many use is a
string in the format of xxx.yyy.zzz, which resembles the path alias. For example,
if a message is logged in our application's SiteController class, we may choose to
use the category application.controllers.SiteController.

In addition to specifying the category, when using Yii::log, we can also specify a
level for the message. The level can be thought of as the severity of the message. You
can define your own levels, but typically they take on one of the following values:

•	 Trace: This level is commonly used for tracing the execution flow of the
application during development.

•	 Info: This is for logging general information. This is the default level if none
is specified.

Production Readiness

[278]

•	 Profile: This is to be used with the performance profile feature, which is
described later in this chapter.

•	 Warning: This is for warning messages.
•	 Error: This is for fatal error messages.

Adding a login message log
As an example, let's add some logging to our user login method. We'll provide
some basic debugging information at the beginning of the method to indicate
that the method is being executed. We'll then log an informational message
upon a successful login, as well as a warning message if the login fails. Alter our
SiteController::actionLogin() method as the following highlighted code
suggests (the entire method is present in the downloadable code or you can
download the standalone method from https://gist.github.com/3791860).

public function actionLogin()
{
 Yii::trace("The actionLogin() method is being requested",
"application.controllers.SiteController");
 …

 // collect user input data
 if(isset($_POST['LoginForm']))
 {
 …
if($model->validate() && $model->login())
 {
 Yii::log("Successful login of user: " . Yii::app()->user->id,
"info", "application.controllers.SiteController");
 $this->redirect(Yii::app()->user->returnUrl);
 }
 else
 {
 Yii::log("Failed login attempt", "warning", "application.
controllers.SiteController");
 }

 }
 …
}

Chapter 12

[279]

If we now successfully log in (or perform a failed attempt) and visit our page to view
the logs, we don't see them (if you commented out the debug mode declaration,
make sure you have put the application back in debug mode for this exercise).
Again, the reason is that, by default, the logging implementation in Yii simply stores
the messages in memory. They disappear when the request completes. This is not
terribly useful. We need to route them to a more persistent storage area so we can
view them outside of the request in which they are generated.

Message routing
As we mentioned earlier, by default, messages logged using Yii::log or
Yii::trace are kept in memory. Typically, these messages are more useful if they
are displayed in browser windows, saved to some persistent storage (such as in
a file), in a database, or sent as an email. Yii's message routing allows for the log
messages to be routed to different destinations.

In Yii, message routing is managed by a CLogRouter application component. It allows
you to define a list of destinations to which the log messages should be routed.

In order to take advantage of this message routing, we need to configure the
CLogRouter application component in our protected/config/main.php
configuration file. We do this by setting its routes property with the desired log
message destinations.

If we open up the main configuration file, we see that some configuration has already
been provided (again, courtesy of using the yiic webapp command to initially
create our application). The following is already defined in our configuration:

'log'=>array
 'class'=>'CLogRouter',
 'routes'=>array(
 array(
 'class'=>'CFileLogRoute',
 'levels'=>'error, warning',
),
 // uncomment the following to show log messages on web pages
 /*
 array(
 'class'=>'CWebLogRoute',
),
 */
),
),

Production Readiness

[280]

The log application component is configured to use the framework class
CLogRouter. Certainly, you could also create and use a custom child class of this if
you have logging requirements not fully met by the base framework implementation;
but in our case, this will work just fine.

What follows the class definition in the previous configuration is the definition of
the routes property. In this case, there is just one route specified. This one is using
the Yii framework message routing class, CFileLogRoute. The CFileLogRoute
message routing class uses the filesystem to save the messages. By default, messages
are logged in a file under the application runtime directory, /protected/runtime/
application.log. In fact, if you have been following along with us and have your
own application, you can take a peek at this file and will see several messages that
have been logged by the framework. The levels specification dictates that only
messages whose log level is either error or warning will be routed to this file.
The part of the configuration in the previous code that is commented out specifies
another route, CWebLogRoute. If used, this will route the message to be displayed on
the currently requested web page. The following is a list of message routes currently
available in Version 1.1 of Yii:

•	 CDbLogRoute: Saves messages in a database table
•	 CEmailLogRoute: Sends messages to specified e-mail addresses
•	 CFileLogRoute: Saves messages in a file under the application's runtime

directory or any other directory of your choice
•	 CWebLogRoute: Displays messages at the end of the current web page
•	 CProfileLogRoute: Displays profiling messages at the end of the current

web page

The logging that we added to our SiteController::actionLogin() method used
Yii::trace for one message and then used Yii::log for two more. When using
Yii::trace the log level is automatically set to trace. When using the Yii::log we
specified an info log level if the login was successful, but a warning level if the login
attempt failed. Let's alter our log routing configuration to write the trace and info
level messages to a new, separate file called infoMessages.log in the same directory
as our application.log file. Also, let's configure it to write the warning messages
to the browser. To do that, we will make the following changes (highlighted) to the
configuration:

'log'=>array(
 'class'=>'CLogRouter',
 'routes'=>array(
 array(
 'class'=>'CFileLogRoute',
 'levels'=>'error',

Chapter 12

[281]

),
 array(
 'class'=>'CFileLogRoute',
 'levels'=>'info, trace',
 'logFile'=>'infoMessages.log',
),
 array(
 'class'=>'CWebLogRoute',
 'levels'=>'warning',
),

Now, after saving these changes, let's try out the different scenarios. First, try a
successful login. Doing so will write our two login messages out to our new /
protected/runtime/infoMessages.log file, one for the trace and the other one
logging the successful login. After successfully logging in, viewing that file reveals
the following (the full listing was truncated to save a few trees):

.....
2012/06/15 00:31:52 [trace] [application.controllers.SiteController]
The actionLogin() method is being requested
2012/06/15 00:31:52 [trace] [system.web.CModule] Loading "user"
application component
2012/06/15 00:31:52 [trace] [system.web.CModule] Loading "session"
application component
2012/06/15 00:31:52 [trace] [system.web.CModule] Loading "db"

application component
2012/06/15 00:31:52 [trace] [system.db.CDbConnection] Opening DB
connection
.....
2012/06/15 00:31:52 [info] [application.controllers.SiteController]
Successful login of user: 1
.....

As you can see, there is a lot more in there than just our two messages! But our two
did show up; they are in bold in the previous listing. Now that we are routing all
trace messages to this new file, all framework trace messages are showing up here
as well. This is actually very informative and really helps you get a picture of the
lifecycle of a request as it makes its way through the framework. There is a lot going
on under the covers. We would obviously turn off this verbose level of logging when
moving this application to production. In non-debug mode, we would only see our
single info level message. But this level of detail can be very informative when
trying to track down bugs and just figuring out what the application is doing. It is
very comforting to know it is here when/if ever needed.

Production Readiness

[282]

Now let's try the failed login attempt scenario. If we now log back out and try our
login again, but this time specify incorrect credentials to force a failed login, we see
our warning level display along the bottom of the returned web page just as we
configured it to do. The following screenshot shows this warning being displayed:

When using the CFileLogRouter message router, the log files are stored under the
logPath property and the filename is specified by the logFile method. Another
great feature of this log router is automatic logfile rotation. If the size of the logfile
is greater than the value set in the maxFileSize property (in kilobytes) a rotation
is performed, which renames the current log file by suffixing the filename with .1.
All existing logfiles are moved backwards one place, that is, .2 to .3, .1 to .2. The
property maxLogFiles can be used to specify how many files are to be kept.

If you use die; or exit; in your application to terminate the execution,
log messages may not be properly written to their intended destinations.
If you need to explicitly terminate the execution of your Yii applications,
use Yii::app()->end(). This provides the application an
opportunity to write out log messages successfully. Also, the CLogger
component has an $autoDump property that, if set to true, will allow
the writing of log messages to their destinations in real time (that is, as
->log() is called). This should only be used for debugging purposes
due to its potential performance impact, but can be a very valuable
debugging option.

Handling errors
Properly handling the errors that invariably occur in software applications is of
utmost importance. This, again, is a topic that arguably should have been covered
prior to coding our application, rather than at this late stage. Luckily, though, since
we have been leaning on tools within the Yii framework to autogenerate much of
our core application skeleton, our application is already taking advantage of some of
Yii's error handling features.

Chapter 12

[283]

Yii provides a complete error handling framework based on PHP 5 exceptions, a built-in
mechanism for handling exceptional circumstances in the program through centralized
points. When the main Yii application component is created to handle an incoming
user request, it registers its CApplication::handleError() method to handle PHP
warnings and notices, and it registers its CApplication::handleException() method
to handle uncaught PHP exceptions. Consequently, if a PHP warning/notice or an
uncaught exception occurs during the application execution, one of the error handlers
will take over the control and start the necessary error handling procedure.

The registration of error handlers is done in the application's
constructor by calling the PHP functions set_exception_handler
and set_error_handler. If you prefer not to have Yii handle these
types of errors and exceptions, you may override this default behavior
by defining the global constants YII_ENABLE_ERROR_HANDLER and
YII_ENABLE_EXCEPTION_HANDLER to be false in the main index.
php entry script.

By default, the application will use the framework class CErrorHandler as the
application component tasked with handling PHP errors and uncaught exceptions.
Part of the task of this built-in application component is displaying these errors using
appropriate view files based on whether or not the application is running in debug
mode or in production mode. This allows you to customize your error messages for
these different environments. It makes sense to display much more verbose error
information in a development environment to help troubleshoot problems. But
allowing users of a production application to view this same information could
compromise security. Also, if you have implemented your site in multiple languages,
CErrorHandler also selects the preferred language for displaying the error.

You raise exceptions in Yii in the same way you would normally raise a PHP
exception. One uses the following general syntax to raise an exception when needed:

throw new ExceptionClass('ExceptionMessage');

The two exception classes Yii provides are:

•	 CException

•	 CHttpException

CException is a generic exception class. CHttpException represents an HTTP error
and also carries a statusCode property to represent the HTTP status code. Errors are
displayed differently in the browser, depending on the exception class that is thrown.

Production Readiness

[284]

Displaying errors
As was previously mentioned, when the CErrorHandler application component is
handling an error, it makes a decision as to which view file to use when displaying
the error. If the error is meant to be displayed to end users, as is the case when using
CHttpException, the default behavior is to use a view named errorXXX, where XXX
represents the HTTP status code (for example, 400, 404, or 500). If the error is an
internal one and should only be displayed to developers, it will use a view named
Exception. When the application is in debug mode, a complete call stack as well as
the error line in the source file will be displayed.

However, when the application is running in production mode, all errors will be
displayed using the errorXXX view files. This is because the call stack of an error
may contain sensitive information that should not be displayed to just any end user.

When the application is in production mode, developers should rely on the error
logs to provide more information about an error. A message of level error will
always be logged when an error occurs. If the error is caused by a PHP warning or
notice, the message will be logged with the category php. If the error is caused by
an uncaught exception, the category will be exception.ExceptionClassName,
where the exception class name is one of, or a child class of, either CHttpException
or CException. One can thus take advantage of the logging features discussed in
the previous section to monitor errors that occur within a production application. Of
course, if fatal PHP errors occur you will still need to check your error log defined by
your PHP configuration settings instead of Yii's error log.

By default, CErrorHandler searches for the location of the corresponding view file in
the following order:

•	 WebRoot/themes/ThemeName/views/system: The system view directory
under the currently active theme

•	 WebRoot/protected/views/system: The default system view directory for
an application

•	 YiiRoot/framework/views: The standard system view directory provided
by the Yii framework

You can customize the error display by creating custom error view files under the
system view directory of the application or theme.

Yii also allows you to define a specific controller action method to handle the display
of the error. This is actually how our application is configured. We'll see this as we
go through a couple of examples.

Chapter 12

[285]

Some of the code that was generated for us as a by-product of using the Gii Crud
Generator tool to create our CRUD scaffolding is already taking advantage of Yii's
error handling. One such example is the ProjectController::loadModel()
method. That method is defined as follows:

public function loadModel($id)
 {
 $model=Project::model()->findByPk($id);
 if($model===null)
 throw new CHttpException(404,'The requested page does not
exist.');
 return $model;
 }

We see that it is attempting to load the appropriate project model AR instance based
on the input id querystring parameter. If it is unable to locate the requested project,
it throws a CHttpException as a way to let the user know that the page they are
requesting, in this case the project details page, does not exist. We can test this in
our browser by explicitly requesting a project that we know does not exist. Since
we know our application does not have a project associated with an id of 99, a
request for http://localhost/trackstar/project/view/id/99 will result in the
following page being returned:

This is nice, because the page looks like any other page in our application, with the
same theme, header, footer, and so on.

Production Readiness

[286]

This is actually not the default behavior for rendering this type of error page. Our
initial application was configured to use a specific controller action for the handling
of such errors. We mentioned this was another option as to how to handle errors
in an application. If we take a peek into our main configuration file, /protected/
config/main.php, we see the following application component declaration:

'errorHandler'=>array(
 // use 'site/error' action to display errors
 'errorAction'=>'site/error',
),

This configures our error handler application component to use the
SiteController::actionError() method to handle all of the exceptions intended
to be displayed to users. If we take a look at that action method, we notice that it is
rendering the protected/views/site/error.php view file. This is just a normal
controller view file, so it will also render any relevant application layout files and
will apply the appropriate theme. This way, we are able to provide the user with a
very friendly experience when certain errors happen.

To see what the default behavior is, without this added configuration, let's
temporarily comment out the previous lines of configuration code (in protected/
config/main.php) and request the nonexistent project again. Now we see the
following page:

Since we have not explicitly defined any custom error pages following the
convention outlined earlier, this is the framework/views/error404.php file in the
Yii framework itself.

Go ahead and revert these changes to the configuration file to have the error
handling use the SiteController::actionError() method once again.

Now let's see how this compares to throwing a CException class, rather than the
HTTP exception class. Let's comment out the current line of code throwing the
HTTP exception and add a new line to throw this other exception class. Make the
highlighted changes to the protected/controllers/ProjectController.php file:

public function loadModel($id)
 {
 $model=Project::model()->findByPk($id);

Chapter 12

[287]

 if($model===null)
 //throw new CHttpException(404,'The requested page does not
exist.');
 throw new CException('This is an example of throwing a
CException');
 return $model;
 }

Now if we make our request for a nonexistent project, we see a very different result.
This time we see a system generated error page with a full stack trace error info
dump along with the specific source file where the error occurred:

It displays the fact that a CException class was thrown along with the description
This is an example of throwing a CException, the source file, specific line in the file
where the error occurred, and then the full stack trace.

Production Readiness

[288]

So, throwing this different exception class, along with the fact the application is in
debug mode, has a different result. This is the type of information we would like
to display to help troubleshoot the problem, but only as long as our application is
running in a private development environment. Let's temporarily comment out the
debug setting in the root index.php file in order to see how this would display when
in "production" mode:

// remove the following line when in production mode
//defined('YII_DEBUG') or define('YII_DEBUG',true);

With this commented out, if we refresh our request for our nonexistent project,
we see that the exception is displayed as an end user friendly HTTP 500 error, as
depicted in the following screenshot:

So we see that none of our sensitive code or stack trace information is displayed
when in the "production" mode.

Caching
Caching data is a great method for helping to improve the performance of a
production web application. If there is specific content that is not expected to change
upon every request, using a cache to store and serve this content can decrease the
time it takes to retrieve and process that data.

Yii provides some nice features when it comes to caching. To take advantage of Yii's
caching features, you begin with configuring a cache application component. Such a
component is one of several child classes extending CCache, the base class for cache
classes with different cache storage implementations.

Chapter 12

[289]

Yii provides many specific cache component class implementations that store the
data utilizing different approaches. The following is a list of the current cache
implementations that Yii provides as of Version 1.1.12:

•	 CMemCache: Uses the PHP memcache extension.
•	 CApcCache: Uses the PHP APC extension.
•	 CXCache: Uses PHP XCache extension.
•	 CEAcceleratorCache: Uses the PHP EAccelerator extension.
•	 CDbCache: Uses a database table to store cached data. By default, it will create

and use a SQLite3 database under the runtime directory. You can explicitly
specify a database for it to use by setting its connectionID property.

•	 CZendDataCache: Uses Zend Data Cache as the underlying caching medium.
•	 CFileCache: Uses files to store cached data. This is particularly suitable to

cache a large chunk of data (such as pages).
•	 CDummyCache: Presents the consistent cache interface, but does not actually

perform any caching. The reason for this implementation is that if you are
faced with a situation where your development environment does not have
cache support, you can still execute and test your code that will need to use
cache once available. This allows you to continue to code to a consistent
interface, and when the time comes to actually implement a real caching
component you will not need to change the code written to write or retrieve
data from cache.

•	 CWinCache: CWinCache implements a cache application component based
on WinCache. For more information visit http://www.iis.net/expand/
wincacheforphp.

All of these components extend from the same base class, CCache, and expose
a consistent API. This means that you can change the implementation of the
application component in order to use a different caching strategy without having to
change any of the code that is using the cache.

Production Readiness

[290]

Cache configuration
As was mentioned, using cache in Yii typically involves choosing one of these
implementations and then configuring the application component for use in the
/protected/config/main.php file. The specifics of the configuration will, of course,
depend on the specific cache implementation. For example, if one were to use the
memcached implementation, that is CMemCache, which is a distributed memory
object caching system that allows you to specify multiple host servers as your cache
servers, configuring it to use two servers might look something like the following:

array(

 'components'=>array(

 'cache'=>array(
 'class'=>'system.caching.CMemCache',
 'servers'=>array(
 array('host'=>'server1', 'port'=>12345, 'weight'=>60),
 array('host'=>'server2', 'port'=>12345, 'weight'=>40),
),
),
),
);

To keep things relatively simple for the reader following along with the TrackStar
development, we'll use the filesystem implementation CFileCache as we go through
some examples. This should be readily available on any development environment
that allows read and write access to files from the filesystem.

If for some reason this is not an option for you but you still
want to follow along with the code examples, simply use the
CDummyCache option. As mentioned, it won't actually store any
data in the cache, but you can still write code against its API and
change the implementation at a later time.

CFileCache provides a file-based caching mechanism. When using this
implementation, each data value being cached is stored in a separate file. By
default, these files are stored under the protected/runtime/cache/ directory, but
one can easily change this by setting the cachePath property when configuring
the component. For our purposes this default is fine, so we simply need to add
the following to the components array in our /protected/config/main.php
configuration file, as such:

// application components
 'components'=>array(

Chapter 12

[291]

 …
 'cache'=>array(
 'class'=>'system.caching.CFileCache',
),
 …
),

With this in place, we can access this new application component anywhere in our
running application via Yii::app()->cache.

Using a file-based cache
Let's try out this new component. Remember that system message we added as part
of our administrative functionality in the previous chapter? Rather than retrieving it
from the database upon every request, let's store the value initially returned from the
database in our cache for a limited amount of time so that not every request has to
retrieve the data from the database.

Let's add a new public method to our SysMessage (/protected/modules/admin/
models/SysMessage.php) AR model class to handle the retrieval of the latest system
messages. Let's make this new method both public and static so that other parts
of the application can easily use this method to access the latest system message
without having to explicitly create an instance of SysMessage.

Add our method to the SysMessage class as follows:

/**
 * Retrieves the most recent system message.
 * @return SysMessage the AR instance representing the latest system
message.
 */

public static function getLatest()
{

 //see if it is in the cache, if so, just return it
 if(($cache=Yii::app()->cache)!==null)
 {
 $key='TrackStar.ProjectListing.SystemMessage';
 if(($sysMessage=$cache->get($key))!==false)
 return $sysMessage;
 }
 //The system message was either not found in the cache, or
//there is no cache component defined for the application
//retrieve the system message from the database

Production Readiness

[292]

 $sysMessage = SysMessage::model()->find(array(
 'order'=>'t.update_time DESC',
));
 if($sysMessage != null)
 {
 //a valid message was found. Store it in cache for future
retrievals
 if(isset($key))
 $cache->set($key,$sysMessage,300);
 return $sysMessage;
 }
 else
 return null;
}

We'll cover the details in just a minute. First, let's change our application to use this
new method to verify whether caching is working. We still need to change the Project
Controller::actionIndex() method to use this newly created method. This is easy.
Just replace the code that was generating the system message from the database, with
a call to this new method. That is, in ProjectController::actionIndex(), simply
change the following code:

$sysMessage = SysMessage::model()->find(array('order'=>'t.update_time
DESC',));

To the following:

$sysMessage = SysMessage::getLatest();

Now the system message being displayed on the projects listing page should be
taking advantage of the file cache. We can check the cache directory to verify.

If we do a directory listing for the default location being used for file caching,
protected/runtime/cache/, we do indeed see that a couple of files were created.
Both of them rather strangely named (yours may be slightly different) 18baacd81490
0e9b36b3b2e546513ce8.bin and 2d0efd21cf59ad6eb310a0d70b25a854.bin.

One holds our system message data and the other is from our configuration of
CUrlManager from previous chapters. By default, CUrlManager will use the cache
component to cache the parsed URL rules. You can set the cacheId parameter of
CUrlManager to false to disable caching for this component.

Chapter 12

[293]

If we open up the 18baacd814900e9b36b3b2e546513ce8.bin file as text, we can see
the following:

a:2:{i:0;O:10:"SysMessage":12:{s:18:" :" CActiveRecord _ _md";N;s:19:"
:" CActiveRecord _ _new";b:0;s:26:" :" CActiveRecord _ _attributes"
;a:6:{s:2:"id";s:1:"2";s:7:"message";s:56:"This is a second message
from your system administrator!";s:11:"create_time";s:19:"2012-07-31
21:25:33";s:14:"create_user_id";s:1:"1";s:11:"update_
time";s:19:"2012-07-31 21:25:33";s:14:"update_user_id";s:1:"1";}
s:23:" :"18CActiveRecord _18_related";a:0:{}s:17:" :" CActiveRecord
_ _c";N;s:18:" 18:" CActiveRecord _ _:" _pk";s:1:"2";s:21:"
:" CActiveRecord _ _alias";s:1:"t";s:15:" :" CModel _ _
errors";a:0:{}s:19:" :" CModel _ _validators";N;s:17:" :" CModel
_ _scenario";s:6:"update";s:14:" :" CComponent _ _e";N;s:14:" :"
CComponent _ _m";N;}i:1;N;}

This is the serialized cached value of our most recently updated SysMessage AR
class instance, which is exactly what we would expect to be there. So, we see that the
caching is actually working.

Now let's revisit the code for our new SysMessage::getLatest() method in a bit
more detail. The first thing the code is doing is checking to see if the requested data
is already in the cache, and if so returning that value:

//see if it is in the cache, if so, just return it
if(($cache=Yii::app()->cache)!==null)
{
 $key='TrackStar.ProjectListing.SystemMessage';
 if(($sysMessage=$cache->get($key))!==false)
 return $sysMessage;
}

As we mentioned, we configured the cache application component to be available
anywhere in the application via Yii::app()->cache. So, it first checks to see if there
even is such a component defined. If so, it attempts to look up the data in the cache
via the $cache->get($key) method. This does more or less what you would expect.
It attempts to retrieve a value from the cache based on the specified key. The key is a
unique string identifier that is used to map to each piece of data stored in the cache.
In our system message example, we only need to display one message at a time and
therefore can have a fairly simple key identify the single system message to display.
The key can be any string value as long as it remains unique for each piece of data
we want to cache. In this case we have chosen the descriptive string TrackStar.
ProjectListing.SystemMessage as the key used when storing and retrieving our
cached system message.

Production Readiness

[294]

When this code is executed for the very first time, there will not yet be any data
associated with this key value in the cache. Therefore, a call to $cache->get()
for this key will return false. So, our method will continue to the next bit of
code, which simply attempts to retrieve the appropriate system message from the
database, using the AR class:

$sysMessage = SysMessage::model()->find(array(
 'order'=>'t.update_time DESC',
));

We then proceed with the following code that first checks if we did get anything
back from the database. If we did, it stores it in the cache before returning the value;
otherwise, null is returned:

if($sysMessage != null)
{
 if(isset($key))
 $cache->set($key,$sysMessage->message,300);
 return $sysMessage->message;
}
else
 return null;

If a valid system message was returned, we use the $cache->set() method to store
the data into the cache. This method has the following general form:

set($key,$value,$duration=0,$dependency=null)

When placing a piece of data into the cache, one must specify a unique key as well
as the data to be stored. The key is a unique string value, as discussed previously,
and the value is whatever data is desired to be cached. This can be in any format as
long as it can be serialized. The duration parameter specifies an optional time-to-live
(TTL) requirement. This can be used to ensure that the cached value is refreshed
after some period of time. The default is 0, which means it will never expire.
(Actually, internally, Yii translates a value of <=0 for the duration to expire in one
year. So, not exactly never, but definitely a long time.)

We call the set() method in the following manner:

$cache->set($key,$sysMessage->message,300);

Chapter 12

[295]

We set the key to be what we had defined it before, TrackStar.ProjectListing.
SystemMessage; the data being stored is the message attribute of our returned
SystemMessage AR class, that is the message column of our tbl_sys_message table;
and then we set the duration to be 300 seconds. This way, the data in the cache will
expire every 5 minutes, at which time the database is queried again for the most
recent system message. We did not specify a dependency when we set the data. We'll
discuss this optional parameter next.

Cache dependencies
The dependency parameter allows for an alternative and much more sophisticated
approach to deciding whether or not the stored data in the cache should be
refreshed. Rather than declaring a simple time period for the expiration of cached
data, your caching strategy may require that the data become invalid based on
things such as the specific user making the request, the general mode, state of the
application, or whether a file on the file system has been recently updated. This
parameter allows you to specify such cache validation rules.

The dependency is an instance of CCacheDependency or its child class. Yii makes
available the following specific cache dependencies:

•	 CFileCacheDependency: The data in the cache will be invalid if the specified
file's last modification time has changed since the previous cache lookup.

•	 CDirectoryCacheDependency: Similar to the previous one for the file cache
dependency, but this checks all the files and subdirectories within a given
specified directory.

•	 CDbCacheDependency: The data in the cache will be invalid if the query result
of a specified SQL statement is changed since the previous cache lookup.

•	 CGlobalStateCacheDependency: The data in the cache will be invalid if the
value of the specified global state is changed. A global state is a variable that
is persistent across multiple requests and multiple sessions in an application.
It is defined via CApplication::setGlobalState().

•	 CChainedCacheDependency: This allows you to chain together multiple
dependencies. The data in the cache will become invalid if any of the
dependencies on the chain are changed.

•	 CExpressionDependency: The data in the cache will be invalid if the result of
the specified PHP expression is changed.

Production Readiness

[296]

To provide a concrete example, let's use a dependency to expire the data in
the cache whenever a change to the tbl_sys_message database table is made.
Rather than arbitrarily expiring our cached system message after five minutes,
we'll expire it exactly when we need to, that is, when there has been a change to
the update_time column for one of the system messages in the table. We'll use
the CDbCacheDependency implementation to achieve this, since it is designed to
invalidate cached data based on a change in the results of a SQL query.

We alter our call to the set() method to set the duration time to 0 so that it won't
expire based on time but pass in a new dependency instance with our specified SQL
statement, as such:

$cache->set($key, $sysMessage, 0, new CDbCacheDependency('SELECT
MAX(update_time) FROM tbl_sys_message'));

Changing the duration TTL time to 0 is not at all a prerequisite of using
a dependency. We could have just as easily left the duration in as 300
seconds. This would just stipulate another rule to render the data in the
cache invalid. The data would only be valid in the cache for a maximum
of 5 minutes, but would also be regenerated prior to this time limit if
there is a newer message, that is, a later update_time value in the table.

With this in place, the cache will only expire when the results of the query statement
are changed. This example is a little contrived, since we were originally caching the
data to avoid a database call altogether. Now we have configured it to execute a
database query every time we attempt to retrieve data from the cache. However, if the
cached data was a much more complex data set that involved much more overhead
to retrieve and process, a simple SQL statement for cache validity could make a lot
of sense. The specific caching implementation, the data stored, the expiration time, as
well as any other data validation in the form of these dependencies, will all depend on
the specific requirements of the application being built. It is good to know that Yii has
many options available to help meet our varied requirements.

Query caching
The query caching approach of caching a database result is so often needed in
database driven applications that Yii provides an even easier implementation for
this, called query caching. As its name implies, query caching stores the results of a
database query in cache and saves the query execution time on subsequent requests
as these are served directly from cache. In order to enable a query, you need to
ensure the queryCacheID property of the CDbConnection property refers to the ID
attribute of a valid cache component. It refers to 'cache' by default, which is what
we already have configured from the preceding cache example.

Chapter 12

[297]

To use query caching, we simply call the cache() method of CDbConnection.
This method takes in a duration, to specify the number of seconds the query is to
remain in cache. If the duration is set to 0, caching is disabled. You can also specify
a CCacheDependency instance as a second argument, and specify how many
subsequent queries should be cached as a third argument. This third argument
defaults to 1, which means that only the next SQL query will be cached.

So, let's change our previous cache implementation to use this cool query
caching feature. Using the query caching, our implementation of the
SysMessage::getLatest() method is greatly simplified. All we need to
do is the following:

 //use the query caching approach
 $dependency = new CDbCacheDependency('SELECT MAX(update_time) FROM
tbl_sys_message');
 $sysMessage = SysMessage::model()->cache(1800, $dependency)-
>find(array(
 'order'=>'t.update_time DESC',
));
 return $sysMessage;

Here we have the same basic approach as before, but we don't have to deal with the
explicit checking and setting of the cached values. We called the cache() method to
indicate we want to cache the result for 30 minutes or, by specifying the dependency,
refresh the value before that time if a more recent message becomes available.

Fragment caching
The previous examples demonstrate the use of data caching. This is where we take
a single piece of data and store it in the cache. There are other approaches available
in Yii to store fragments of pages generated by a portion of a view script or even the
entire page itself.

Fragment caching refers to caching a fragment of a page. We can take
advantage of fragment caching inside view scripts. To do so, we use the
CController::beginCache() and CController::endCache() methods. These
two methods are used to mark the beginning and the end of the rendered page
content that should be stored in cache. Just as is the case when using a data caching
approach, we need a unique key to identify the content being cached. In general, the
syntax for using fragment caching inside a view script is as follows:

...some HTML content...
<?php
if($this->beginCache($id))
{

Production Readiness

[298]

// ...content you want to cache here
$this->endCache();
}
?>
...other HTML content...

The method beginCache() returns false when there is a cached version available,
and the cached content will be automatically inserted at that place; otherwise, the
content inside the if-statement will be executed and will be cached when endCache()
is invoked.

Declaring fragment caching options
When calling beginCache(), we can supply an array as the second parameter
consisting of caching options to customize the fragment caching. As a matter of
fact, the beginCache() and endCache() methods are a convenient wrapper of the
COutputCache filter/widget. Therefore, the caching options can be initial values for
any properties of the COutputCache class.

Arguably one of the most common options specified when caching data is the
duration, which specifies how long the content can remain valid in the cache. It is
similar to the duration parameter we used when caching our system messages. You
can specify the duration parameter when calling beginCache() as follows:

$this->beginCache($key, array('duration'=>3600))

The default setting for this fragment caching approach is different than that for the
data caching. If we do not set the duration it defaults to 60 seconds, meaning the
cached content will be invalidated after 60 seconds. There are many other options
you can set when using fragment caching. For more information, refer to the API
documentation for COutputCache as well as the fragment caching section of the Yii
definitive guide, available on the Yii framework site: http://www.yiiframework.
com/doc/guide/1.1/en/caching.fragment

Using fragment cache
Let's implement this in our TrackStar application. We'll again focus on the project
listings page. As you may recall, towards the bottom of the project listings page
there is a list of the comments that users have left on the issues associated with
each project. This list just indicates who left a comment on which issue. Rather than
regenerating this list upon each request, let's use fragment caching to cache this list
for, say, two minutes. The application can tolerate this data being slightly stale, and
two minutes is really not that long to have to wait for an updated comment list.

Chapter 12

[299]

To do this, we make our changes to the listing view file, protected/views/
project/index.php. We'll wrap the call to our entire recent comments portlet inside
this fragment caching approach, as such:

<?php
$key = "TrackStar.ProjectListing.RecentComments";
if($this->beginCache($key, array('duration'=>120))) {
 $this->beginWidget('zii.widgets.CPortlet', array(
 'title'=>'Recent Comments',
));
 $this->widget('RecentCommentsWidget');
 $this->endWidget();
 $this->endCache();
}
?>

With this in place, if we visit the project listings page for the first time, our comments
list will be stored in the cache. If we then quickly (by quickly, we mean before two
minutes have elapsed) add a new comment to one of the issues within a project, and
then toggle back to the project listings page, we won't immediately see the newly
added comment. But if we keep refreshing the page, once the content in the cache
expires (a maximum of two minutes in this case), the data will be refreshed and our
new comment will be displayed in the listing.

You could also simply add an echo time(); PHP statement to the
previously cached content to see if it is working as expected. If the
content is properly caching, the time display will not update until the
cache is refreshed. When using the file cache, remember to ensure that
your /protected/runtime/ directory is writable by the web server
process, as this is where the cache content is stored by default.

We could avoid this situation by declaring a cache dependency, rather than a fixed
duration. Fragment caching also supports cache dependencies. So, we could change
the beginCache() method call, seen previously, to the following:

if($this->beginCache($key, array('dependency'=>array(
 'class'=>'system.caching.dependencies.CDbCacheDependency',
 'sql'=>'SELECT MAX(update_time) FROM tbl_comment')))) {

Here we have used the CDbCacheDependency method to cache the content until an
update is made to our comments table.

Production Readiness

[300]

Page caching
In addition to fragment caching, Yii offers options to cache the results of the
entire page request. The page caching approach is similar to the fragment caching
approach. However, because the content of an entire page is often generated by
applying additional layouts to a view, we can't simply call beginCache() and
endCache() in the layout file. The reason is that the layout is applied within the call
to the CController::render() method after the content view is evaluated. So, we
would always miss the opportunity to retrieve the content from the cache.

Therefore, to cache a whole page, we should entirely skip the execution of the action
generating the page content. To accomplish this, we can use the COutputCache class
as an action filter in our controller class.

As an example, let's use the page caching approach to cache the page results for every
project detail page. The project detail pages in TrackStar are rendered by requesting
URLs of the format http://localhost/trackstar/project/view/id/[id], where
[id] is the specific project ID we are requesting the details of. What we want to do is
set up a page caching filter that will cache the entire contents of this page separately for
every ID requested. We need to incorporate the project ID into the key value when we
cache the content. That is, we don't want to make a request for the details of project #1
and have the application return a cached result for project #2. The COutputCache filter
allows us to do just that.

Open up protected/controllers/ProjectController.php and alter the existing
filters() method as such:

public function filters()
{
 return array(
 'accessControl', // perform access control for CRUD operations
 array(
 'COutputCache + view', //cache the entire output from the
actionView() method for 2 minutes
 'duration'=>120,
 'varyByParam'=>array('id'),
),
);
}

http://localhost/trackstar/project/view/id/%5Bid

Chapter 12

[301]

This filter configuration utilizes the COutputCache filter to cache the entire output
generated by the application from a call to ProjectController::actionView().
The + view parameter added just after the COutputCache declaration, as you may
recall, is the standard way we include specific action methods to which a filter
should apply. The duration parameter specifies a TTL of 120 seconds (two minutes),
after which the page content will be regenerated.

The varyByParam configuration is a really great option that we alluded to before.
Rather than putting the responsibility on you, the developer, to come up with a
unique key strategy for the content being cached, this feature allows the variation
to be handled automatically. For example, in this case, by specifying a list of names
that correspond to GET parameters in the input request. Since we are caching the
page content of requests for projects by project_id, it makes perfect sense to use
this ID as part of the unique key generation for caching the content. By specifying
'varyByParam'=>array('id'), COutputCache does this for us based on the input
querystring parameter id. There are more options available to achieve this type of
autocontent variation strategy when using COutputCache to cache our data. As of Yii
1.1.12, the following variation features are available:

•	 varyByRoute: By setting this option to true, the specific request route will
be incorporated into the unique identifier for the cached data. Therefore, you
can use the combination of the requested controller and action to distinguish
cached content.

•	 varyBySession: By setting this option to true, a unique session ID is used
to distinguish the content in the cache. Each user session may see different
content, but all of this content can still be served from the cache.

•	 varyByParam: As discussed earlier, this uses the input GET querystring
parameters to distinguish the content in the cache.

•	 varyByExpression: By setting this option to a PHP expression, we can use the
result of this expression to distinguish the content in the cache.

So, with the above filter configured in our ProjectController class, each request
for a specific project details page is stored in the cache for two minutes before being
regenerated and again stored in the cache. You can test this out by first viewing a
specific project, then updating that project in some way. Your updates will not be
immediately displayed if done within the cache duration time of two minutes.

Production Readiness

[302]

Caching entire page results is a great way to improve site performance, however
it certainly does not make sense for every page in every application to be cached.
Even in our example, caching the entire page for the project details page does not
allow us to correctly use our pagination implementation for our issues listing. We
used this as a quick example of how to implement page caching, but it is not always
the right approach in every case. A combination of these three approaches, data,
fragment, and page caching, allows you to adjust your caching strategy to meet your
application requirements. We have really just scratched the surface of all caching
options available within Yii. Hopefully this has whet your appetite to further
investigate the full caching landscape available.

General performance tuning tips
As you are preparing your application for production, there are a few other things
to take into consideration. The following sections briefly outline some other areas of
consideration when working to tweak the performance of a Yii-based web application.

Using APC
Enabling the PHP APC extension is perhaps the easiest way to improve the
overall performance of an application. The extension caches and optimizes PHP
intermediate code and avoids the time spent in parsing PHP scripts for every
incoming request.

It also provides a very fast storage mechanism for cached content. With APC
enabled, you can use the CApcCache implementation for caching content, fragments,
and pages.

Disabling the debug mode
We discussed the debug mode earlier in the chapter, but it won't hurt to hear it again.
Disabling debug mode is another easy way to improve performance and security. A
Yii application runs in debug mode if the constant YII_DEBUG is defined as true in
the main index.php entry script. Many components, including those down in the
framework itself, incur extra overhead when running in the debug mode.

Also, as was mentioned way back in Chapter 2, Getting Started, when we first created
a Yii application, most of your Yii application files do not need to be, nor should they
be, in the publically accessible web directory. A Yii application has just one entry
script, which is often the only file that needs to be placed in the web directory. Other
PHP scripts, including all of the Yii framework files, should be protected. This is why
the default name of the primary application directory is called protected/. To avoid
security issues, it is recommended to keep it from being publicly accessible.

Chapter 12

[303]

Using yiilite.php
When the PHP APC extension is enabled, one can replace yii.php with a
different Yii bootstrap file named yiilite.php. This can help to further boost the
performance of a Yii-powered application. The file yiilite.php comes with every
Yii release. It is the result of merging some commonly used Yii class files. Both
comments and trace statements are stripped from the merged file. Therefore, using
yiilite.php would reduce the number of files being included and avoid execution
of trace statements.

Note that using yiilite.php without APC may actually reduce
performance. This is because yiilite.php contains some classes that
are not necessarily used in every request and would take extra parsing
time. It is also observed that using yiilite.php is slower with some
server configurations; even when APC is turned on. The best way to
judge whether to use yiilite.php or not is to run a benchmark using
the "Hello World" demo that is included in the code bundle.

Using caching techniques
As we described and demonstrated in this chapter, Yii provides many caching
solutions that may improve the performance of a web application significantly. If the
generation of some data takes a long time, we can use the data caching approach to
reduce the data generation frequency; if a portion of page remains relatively static,
we can use the fragment caching approach to reduce its rendering frequency; if a
whole page remains relative static, we can use the page caching approach to save the
rendering cost for the whole page.

Enabling schema caching
If the application is using Active Record (AR), you can turn on the schema caching
in a production environment to save the time of parsing database schema. This can
be done by configuring the CDbConnection::schemaCachingDuration property to
be a value greater than zero.

Besides these application-level caching techniques, we can also use server-side
caching solutions to boost the application's performance. The enabling of APC
caching that we described here, belongs to this category. There are other server-side
techniques, such as Zend Optimizer, eAccelerator, and Squid, just to name a few.

Production Readiness

[304]

These, for the most part, just provide some good practice guidelines as you work to
prepare your Yii application for production or troubleshoot an existing application
for bottlenecks. General application performance tuning is much more of an art
than a science, and there are many, many factors outside of the Yii framework that
play into the overall performance. Yii has been built with performance in mind
since its inception and continues to outperform many other PHP-based application
development frameworks by a long shot (see http://www.yiiframework.com/
performance/ for more details). Of course, every single web application will need to
be tweaked to enhance the performance, but making Yii the development framework
of choice certainly puts your application on a great performance footing from the onset.

For further details, see the Performance Tuning section of the Yii definitive guide at
http://www.yiiframework.com/doc/guide/1.1/en/topics.performance.

Summary
In this chapter, we have turned our attention to making changes to our application
in order to help improve its maintainability and performance in a production
environment. We first covered application logging strategies available in Yii, and
how to log and route messages based on varying severity levels and categories.
We then turned our focus to error handling and how Yii exploits the underlying
exception implementation in PHP 5 to provide a flexible and robust error handling
framework. We then learned about some different caching strategies available in Yii.
We learned about the caching of application data and content at varying levels of
granularity. Data caching for specific variables or individual pieces of data, fragment
caching for content areas within pages, and full page caching to cache the entire
rendered output of a page request. Finally, we provided a list of good practices to
follow when working to improve the performance of a Yii-powered web application.

Congratulations! We should pat ourselves on the back. We have created an entire
web application from conception to production readiness. Of course we should pat
Yii on the back as well, as it helped ease and quicken the process at every turn. Our
TrackStar application is already pretty great; but as is the case with all such projects,
there is always room for enhancement and improvement. A nice foundation has been
laid on which to build, and now that you have the power of Yii on your side you
could very quickly turn this into a much more useable and feature-rich application.
Also a great many of the examples covered will translate well to other types of web
applications you may be building. I hope you now feel confident using Yii and will
enjoy the benefits of doing so on your future projects. Happy developing!

Index
Symbols
:theTime variable 33
<link> tags 231

A
access control filter 155, 156
accessRules() method 156, 157, 160
actionAdduser() method 183
actionAdmin() controller action 157
actioncreate() action 159
actionCreate() controller action 157
actionCreate() method 15, 98
actionDelete() controller action 157
actionDelete() method 170
actionFeed() method 215
actionGoodbye() method 35
actionHello() method

about 29, 30
date creation, moving to 33

actionIndex() controller action 157, 159
actionIndex() method 15, 108
actionShow() method 15
actions parameter 158
actionUpdate() action 159
actionUpdate() controller action 157
actionView() controller action 157, 159
actionView() method 108, 193
Active Record. See AR
active record model classes

about 84
Issue model class, creating 85
User model class, creating 85

admin access
restricting 260-263

admin mode
projects, managing 74-76

AdminModule::beforeControlerAction
method 269

AdminModule::beforeControllerAction()
method 261

afterSave() 132
afterValidate() method 139
anonymous user 40
application

creating 23
customizing 225
flow 42, 43

application-wide access
model class, importing for 271

AR 12, 16, 303
AR model class

creating 61
Gii, configuring 61
Project AR class creating, Gii used 62, 63

assign() method 179
audit history columns

updating 128
authenticated user 40
authenticate() method 143, 144
AuthItemChild table 163
AuthItem table 163
authManager 162
Authmanager class 179
authorization hierarchy, RBAC

creating 166, 167
authorization item 161
authorization level

checking 184-186
authorization manager

configuring 162

[306]

B
Bcrypt

URL 140
beforeSave() method 132, 191
beforeValidate() method 139
beginContent() method 238, 259
beginWidget() method 206
behaviors() method 129, 130
blog

actionCreate() method 15
actionIndex() method 15
actionShow() method 15
ControllerID name 15
example 14
r querystring variable 14
SiteController 15

blog posting
example 15

blueprint CSS framework
about 229, 230
installation 230

breadcrumb 235
business rules, RBAC

adding 173, 174

C
cache dependencies

CChainedCacheDependency 295
CDbCacheDependency 295
CDirectoryCacheDependency 295
CExpressionDependency 295
CFileCacheDependency 295
CGlobalStateCacheDependency 295

cache implementations, Yii 1.1.12
CApcCache 289
CDbCache 289
CDummyCache 289
CEAcceleratorCache 289
CFileCache 289
CMemCache 289
CWinCache 289
CXCache 289
CZendDataCache 289

caching
about 288, 289
cache dependencies 295, 296

configuration 290
file-based cache, using 291-294
fragment caching 297
page caching 300-302
query caching 296

CActiveRecord::beforeSave() method 139
CActiveRecord::beforeValidate()

method 139
CActiveRecord class 12
CActiveRecord::scopes() method 199
CApplication::findLocalizedFile()

method 249
CApplication::handleError() method 283
CAPTCHA widget 24
Category 277
CController::beginCache() method 297
CController::endCache() method 297
CController::render() method 300
CController::renderPartial() method 227
charset property 48
checkAccess() method 173, 184, 185
CHtml::listData() method 105
CHtml class 37
ClassName::model() method 199
CModel. CFormModel 12
CommentController::accessRules()

method 215
CommentController::actionFeed()

method 218
CommentController.php file 213
commentCount relation 190
comment CRUD

creating 191
commentfeed.xml file 218
Comment::relations() method 191
comments

adding, in scaffolding code 193, 194
table, creating for 188-191

Comment::scopes() method 199
comments widget

creating 198
Component behavior 128, 130, 134
components property 255
configuring

routing rules 218, 219
console application command

writing 167, 168

[307]

controller
about 13, 17
date creation, moving to 33, 34

ControllerID name 15
controllers parameter 158
convention over configuration

philosophy 10
CPortlet

about 206
overview 206

CRangeValidator attribute 94
createAbsoluteUrl() method 215
createComment() method 194
createUrl() method 215
CRUD (Create, Read, Update, Delete)

operation 26
Crud Generator command 191
Crud Generator link 140
Crud Generator option 265
CRUD operations

enabling, for projects 65
CRUD scaffolding

creating 265, 266
creating, for projects 65-67

CTimestampBehavior 129
CWebModule class 255
CWebUser::login() method 146
CWidget

about 198
named scopes 199, 200

CWidget class 198

D
Data Access Objects (DAO)

URL 46
database

connecting to 46
database connection

automated testing 50
functional tests 50
interactive shell, using 49
testing 49, 53, 54
unit tests 50

database management systems (DBMS)
URL 46

database table
creating, for system-wide messages 264

database tables, RBAC
creating 163, 165

data relationships 43-45
db connection

adding, as application component 47, 48
Document Object Model (DOM) 273
DOMDocument::createElement()

method 215
Don't Repeat Yourself. See DRY
downloading

Yii framework, URL 20
down() method 60
DRY 10
dynamic content

about 32
adding, to view 32
date and time, approach for adding 33
date and time, displaying 32

E
eager loading 201
endWiget() method 206
entry script

removing, from URL 220, 221
errors

displaying 284-288
exception classes 283
handling 282, 283

expression parameter 158

F
file translation

performing 249
filter

about 95
adding 96
defining 96

filters() method 156, 157
final navigation tweaks

making 118-122
flash message 180
form

displaying 194-198
fragment caching

about 297
options, declaring 298

[308]

using 298, 299
functional tests 50

G
Generate button 28
getHelp() method 170
getTypeOptions() method 93
getUserOptions() method 105
Gii

about 26
configuring 61
used, to create Project AR class 62-65

Gii code creation tool
using, to create model class 126

Gii code generator 265
Gii tool 189
goodbye.php 36
Graphical User Interface (GUI) 168

H
hasFlash() method 183
Hello World! program

about 26
controller, creating 26
Gii, configuring 26-30
hello.php view, customizing 30
request routing, reviewing 31

high-level tasks 225
home page

last login time, displaying 149, 150

I
identity states 148
importArray() method 215
index.php file 218
init() method 204, 258
installing

about 20
database 22
packages, URL 20
steps 20, 21
Yii 19-21
Zend Framework 212, 213

interactive shell
using 49

Internationalization 244
IPs parameter 158
Issue AR class 193
Issue::attributeLabels() method 91
IssueController::actionAdmin()

method 118-120
IssueController::actionCreate() method 105
IssueController::actionIndex()

method 118-120
IssueController::actionView() method 193,

194, 202
IssueController class 155
IssueController::filters() method 119
IssueController::loadModel() method 202
issue CRUD operations

creating 85
issues, listing 108
new issue, creating 87, 88
project controller, altering 108, 109
project view file, altering 109-111
using 86

issue detail view
changing 114-116

Issue::getStatusText() method 116
Issue::getTypeText() method 116
Issue model class

creating 85
Issue::relations() method 116, 190
Issue::rules() method 91
Issue::search() method 120
Issue::search() model class method 121
isUserInRole() method 179

J
jQuery 273

L
labelEx() method 91
language translation

performing 245, 246
last login time

displaying, on home page 149, 150
last_login_time attribute 134
last_login_time field 148
layout

about 226

[309]

applying 227, 228
applying, for module 258-260
nesting 237-239
specifying 226
using 227, 228
using, for designing 226

lazy loading 201
link

adding, to message functionality 267-270
locale 244
localization 244
logging

about 275, 276
message logging 276
message routing 279

LoginForm::attributeLabels() method 248
LoginForm::authenticate()method 177
LoginForm::login() method 145
LoginForm->validate() method 144
Login link 25
login() method 146
Logout link 25

M
main.php layout

blueprint CSS framework 229, 230
breadcrumb navigation, creating 235, 236
deconstructing 229
decorated content, specifying 236
footer, defining 237
menu navigation items 233-235
page header, defining 231, 232
page title, setting 231

many-to-many relationship 81, 190
MessageController class 28, 29
message, displaying to user

about 270
design tweak, adding 272, 273
model class, importing for application-wide

access 271
recently updated message,

selecting 271, 272
message functionality

link, adding to 267-270

message logging
about 276, 277
category 277
levels, values 277, 278
login message log, adding 278, 279

message routes, Yii version 1.1
CDbLogRoute 280
CEmailLogRoute 280
CFileLogRoute 280
CWebLogRoute 280
ProfileLogRoute 280

message routing 279-282
message sources, Yii

CDbMessageSource 247
CGettextMessageSource 247
CPhpMessageSource 247

message translation
performing 246-248

model
about 12
creating 188-191

model class
creating 265, 266
importing, for application-wide access 271

Model Generator option 265
Model-View-Controller architecture. See

MVC architecture
module

about 251, 252
creating 252-255
layout 256-258
layout, applying 258-260
using 255, 256
working with 252

module layout 256-258
MVC architecture 11
MVC implementation

web request, life cycle 13

N
named scopes 199, 200
new issue, creating

about 87, 88
dropdown types, adding 88
issue type dropdown, adding 89-93
status dropdown, adding 93-95

[310]

O
Object Relational Mapping. See ORM
objects

building 81-84
one-to-many relationship 190
ORM 16, 85
owner and requester fields

data, generating 105-107
dropdowns choices, setting 102-105
fixing 95
project context, enforcing 95

owner and requester names
displaying 116
relational AR, using 116, 117

P
pages

linking 35
new page, linking to 35, 36

params property 255
partial views 194
password confirmation field

adding 136-138
performance tuning, tips

APC, using 302
caching techniques, using 303
debug mode, disabling 302
schema caching, enabling 303, 304
yiilite.php, using 303

per-project basis
roles, adding to users 171

PHP Data Objects (PDO) extension
URL 46

PHPUnit
installing 52
URL 52

pid querystring parameter 122
portlets

about 198
URL, for info 187

postFilter() method 96
preFilter() method 96
production environment

preparing, granular tasks 275
Project AR class 175

creating, Gii used 62-65
project context

about 95
filter, adding 96
filtered actions, specifying 97
filter logic, adding 98, 99
filters, defining 96
project details page, altering 101
project ID, adding 100

project controller
new action method, adding 179, 180

ProjectController::actionAdduser()
method 185

ProjectController::actionIndex()
method 222, 271, 292

ProjectController::actionView()
method 223

ProjectController class 177, 179
ProjectController classes 155
ProjectController::loadModel() method 285
project details page

widget, adding to 207, 208
project issues

managing 79
project members

about 41, 154
using 41

project model class
altering 177

project owner 41, 154
project reader 154
projects

CRUD operations, enabling 65
deleting 74
form field validation 69-73
in admin role, managing 74-76
new project, creating 68, 69
operations, enabling for projects 65
reading 73
scaffolding, creating 65, 66
table, creating 56, 57
updating 74

projects, TrackStar
about 40, 41
issues 41

project table
creating 56

[311]

ProjectUserForm 176

Q
query caching 296

R
RBAC

about 153, 160
authorization hierarchy, creating 166, 167
authorization manager, configuring 162
business rules, adding 173
console application command,

writing 167-170
database tables, creating 162-165
new action method, adding to project

controller 179, 180
new form model class, adding 178, 179
new project AR methods, implementing

174, 175
new view file, adding to display

form 181, 183
project model class, altering 177
roles adding to users, on per-project

basis 171, 172
users, adding to projects 176, 177
users, assigning to roles 170

rbac command 261
Really Simple Syndication (RSS) 212
RecentComments widget 206
RecentCommentsWidget::getData()

method 205
registerLinkTag() method 223
relational AR queries, Yii 200-203
relations() method 104
render() method 194, 227, 257
renderPartial() method 194, 257
Reversish 247
Role Based Access Control. See RBAC
roles

adding, to users on per-project basis 171
roles parameter 158
routing rules

configuring 218, 219
r querystring variable 14
RSS feed 211

RSS feed link
adding 222, 223

rules() method 69, 134, 139
rules() public function 70
run() method 204

S
safeDown() method 59, 84
safeUp() method 59, 84
save() method 139
scaffolding code

altering 192
comments, adding 193, 194
form, displaying 194-198

schema
designing 80
entity-relationship 81
many-to-many relationship 81

scopes() method 200
send() method 215
shell command 261
simple access control filter 153
SiteController 15
SiteController::actionError() method 286
SiteController::actionLogin() method 143,

180, 280
SiteController class action method 160
software development life cycle (SDLC) 39
source language 246
statistical queries 190
status and type text

displaying 112
text display, adding to form 113

SysMessageController::accessRules()
method 269

SysMessage::getLatest() method 293
system-wide message

CRUD scaffolding, creating 265, 266
database table, creating for 264
managing 263
model class, creating 265, 266

T
table

creating, for comments 188-191

[312]

target language 246
tbl_comment table 189, 192
tbl_issue, tbl_user 81
tbl_project_user_assignment table

creating 81
testing

benefits 51
in Yii 51

themes
about 240
application, configuring 242, 243
building, in Yii 240
creating 240-242

time-to-live (TTL) 294
TrackStar

about 39
projects 40
projects, issues 41
software development life cycle (SDLC) 39
users 40
user stories, creating 40

TrackStarActiveRecord class 191
Trackstar application

about 187
feature functionality,

implementing 187, 188
try it now link 29

U
unit tests 50
unofficial extension repository

URL 11
updateProfile 173
up() method 59, 60
URL

entry script, removing from 220, 221
URL manager

about 217
routing rules, configuring 218, 219
using 218

User::rules() method 135, 137
User::validatePassword() method 148
user access control 153
User AR class 127
user-contributed extensions

URL 11

user-friendly URLs
creating 217

UserIdentity class 148
user listing page

URL 127
User model class 129

creating 85
users

about 141
adding, to projects 176, 177
assigning, to roles 170
authenticating, database used 140
message, displaying to 270

users parameter 158
user stories

creating 40
users, TrackStar

anonymous user 40
authenticated user 40

V
verbs parameter 158
view

about 12, 17
dynamic content, adding 32

W
webapp command 167
web content syndication 212
web logs 212
web request

life cycle 13
WebRoot 23
widget

adding, to project details page 207, 208
creating 203-205

with() method 201

Y
Yes, it is. See Yii
Yii

about 9
Active Record (AR) 16
and databases 46
cache dependencies 295

[313]

convention over configuration
philosophy 10

Don't Repeat Yourself (DRY) 10
features 10, 244
history 9
installing, pre-requisites for 19
internationalization 244
localization 244
module 251
new page, linking to 35
Object-relational mapping (ORM) 16
pages, linking 35
relational AR queries 200-203
requisites, checker 21
testing 51
theme, building 240
unit test 52
URL, for statistical queries 190

Yii 1.1.12
varyByExpression feature 301
varyByParam feature 301
varyByRoute feature 301
varyBySession feature 301

Yii authentication model
about 141-143
authenticate implementation,

changing 146, 147
user attributes, extending 148

yiic 23
yiic command-line tool 125
yiic command-line utility 49
yiic command-line utility tool 57
Yii CHtml 37
yiic tool 167

yiic webapp command 24, 279
Yii database migrations 57
Yii, features

easy 10
efficient 10
extensible 11

Yii framework
URL, for downloading 20

Yii modules
about 251
admin access, restricting 260-263
creating 252-255
layout 256-258
layout, applying 258-260
system-wide message, managing 263
using 255, 256
working with 252

YiiRoot 23
Yii web application

creating 45
Yii widget 198

Z
Zend

about 212
URL, for downloading framework files 212

Zend_Feed
about 212, 213
URL, for info 212
using 213-216

Zend Framework
installing 212, 213

Zii 11, 109, 206

Thank you for buying
Web Application Development with Yii and PHP

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Yii 1.1 Application Development
Cookbook
ISBN: 978-1-84951-548-1 Paperback: 392 pages

Over 80 recipes to help you master using the Yii PHP
framework

1.	 Learn to use Yii more efficiently through
plentiful Yii recipes on diverse topics

2.	 Make the most efficient use of your controller
and views and reuse them

3.	 Automate error tracking and understand the
Yii log and stack trace

4.	 Full of practically useful solutions and concepts
that you can use in your application, with
clearly explained code and all the necessary
screenshots

WordPress 3 Complete
ISBN: 978-1-84951-410-1 Paperback: 344 pages

Create your own complete website or blog from
search with WordPress

1.	 Learn everything you need for creating your
own feature-rich website or blog from scratch

2.	 Clear and practical explanations of all aspects
of WordPress

3.	 In-depth coverage of installation, themes,
plugins, and syndication

4.	 Explore WordPress as a fully functional content
management system

5.	 Clear, easy-to-follow, concise; rich with
examples and screenshots

Please check www.PacktPub.com for information on our titles

Magento 1.3: PHP Developer's
Guide
ISBN: 978-1-84719-742-9 Paperback: 260 pages

Design, develop, and deploy feature-rich Magento
online stores with PHP coding

1.	 Extend and customize the Magento e-commerce
system using PHP code

2.	 Set up your own data profile to import or
export data in Magento

3.	 Build applications that interface with the
customer, product, and order data using
Magento's Core API

4.	 Packed with examples for effective Magento
Development

Zend Framework 1.8 Web
Application Development
ISBN: 978-1-84719-422-0 Paperback: 380 pages

Design, develop, and deploy feature-rich PHP web
applications with this MVC framework

1.	 Create powerful web applications by
leveraging the power of this Model-View-
Controller-based framework

2.	 Learn by doing – create a "real-life" storefront
application

3.	 Covers access control, performance
optimization, and testing

4.	 Best practices, as well as debugging and
designing discussion

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Meet Yii
	Easy
	Efficient
	Extensible
	MVC architecture
	Model
	View
	Controller

	Stitching these together: Yii request routing
	Blog posting example

	Object-relational mapping and Active Record
	Active Record

	The view and controller
	Summary

	Chapter 2:
Getting Started
	Installing Yii
	Installing a database

	Creating a new application
	"Hello, World!"
	Creating the controller
	Configuring Gii

	One final step
	Reviewing our request routing

	Adding dynamic content
	Adding the date and time
	A different approach for adding the date and time
	Moving the data creation to the controller

	Have you been paying attention?

	Linking pages together
	Linking to a new page
	Getting a little help from Yii CHtml

	Summary

	Chapter 3:
The TrackStar Application
	Introducing TrackStar
	Creating user stories
	Users
	Projects
	Issues

	Navigation and page flow
	Data relationships
	Creating the new application
	Connecting to the database
	Yii and databases

	Testing the database connection
	Using the interactive shell
	Automated testing – unit and functional tests
	Unit and functional testing

	Benefits of testing
	Testing in Yii
	Unit tests
	Installing PHPUnit

	Testing the connection

	Summary

	Chapter 4:
Project CRUD
	Feature planning
	Creating the project table
	Yii database migrations
	Naming conventions

	Creating the AR model class
	Configuring Gii
	Using Gii to create our Project AR class

	Enabling CRUD operations for projects
	Creating CRUD scaffolding for projects
	Creating a new project
	Form field validation

	Reading the project
	Updating and deleting projects
	Managing projects in Admin mode

	Summary

	Chapter 5:
Managing Issues
	Feature planning
	Designing the schema
	Defining some relationships

	Building objects and their relationships
	Creating active record model classes
	Creating the Issue model class
	Creating the User model class

	Creating the issue CRUD operations
	Using the issue CRUD operations
	Creating a new issue
	Adding drop-down fields
	Adding the issue type drop-down
	Adding the status dropdown: do it yourself

	Fixing the owner and requester fields
	Enforcing a project context
	Defining filters
	Adding a filter
	Specifying the filtered actions
	Adding filter logic
	Adding the project ID
	Altering the project details page

	Returning back to the owner and requester dropdowns
	Generating the data to populate the dropdowns
	Making one last change

	The rest of the CRUD
	Listing the issues
	Altering the project controller
	Altering the project view file

	Final tweaks
	Getting the status and type text to display
	Adding the text display to the form

	Changing the issue detail view
	Displaying owner and requester names
	Using relational AR

	Making some final navigation tweaks

	Summary

	Chapter 6:
User Management
and Authentication
	Feature planning
	User CRUD
	Updating our common audit history columns
	Component behavior

	Adding a password confirmation field
	Hash the password

	Authenticating users using the database
	Introducing the Yii authentication model
	Changing the authenticate implementation
	Extending user attributes

	Displaying the last login time on the home page

	Summary

	Chapter 7:
User Access Control
	Feature planning
	Access control filter
	Role based access control
	Configuring the authorization manager
	Creating the RBAC database tables
	Creating the RBAC authorization hierarchy
	Writing a console application command

	Assigning users to roles
	Adding RBAC roles to users on a per-project basis
	Adding RBAC business rules
	Implementing the new project AR methods

	Adding users to projects
	Altering the project model class
	Adding the new form model class
	Adding the new action method to the project controller
	Adding the new view file to display the form
	Putting it all together

	Checking authorization level
	Summary

	Chapter 8:
Adding User Comments
	Feature planning
	Creating the model
	Creating the comment CRUD
	Altering the scaffolding to meet our requirements
	Adding a comment
	Displaying the form

	Creating a recent comments widget
	Introducing CWidget
	Named scopes
	More on relational AR queries in Yii
	Creating the widget
	Introducing CPortlet

	Summary

	Chapter 9:
Adding an RSS Web Feed
	Feature planning
	A little background–content syndication, RSS, and Zend Framework
	Installing Zend Framework
	Using Zend_Feed
	Creating user-friendly URLs
	Using the URL manager
	Configuring routing rules

	Adding the feed links
	Summary

	Chapter 10:
Making It Look Good
	Feature planning
	Designing with layouts
	Specifying a layout
	Applying and using a layout

	Deconstructing the main.php layout file
	Introducing the Blueprint CSS framework
	Understanding the Blueprint installation

	Setting the page title
	Defining a page header
	Displaying menu navigation items
	Creating a breadcrumb navigation
	Specifying the content being decorated by the layout
	Defining the footer

	Nesting the layouts
	Creating themes
	Building themes in Yii
	Creating a theme
	Configuring the application to use a theme

	Translating the site to other languages
	Defining locale and language
	Performing language translation
	Performing message translation
	Performing file translation

	Summary

	Chapter 11:
Using Yii Modules
	Feature planning
	Working with modules
	Creating a module
	Using a module
	Module layout
	Applying a layout

	Restricting admin access
	Adding a system-wide message
	Creating the database table
	Creating our model and CRUD scaffolding
	Adding a link to our new functionality
	Displaying the message to users
	Importing the new model class for application-wide access
	Selecting the most recently updated message
	Adding a little design tweak

	Summary

	Chapter 12:
Production Readiness
	Feature planning
	Logging
	Message logging
	Categories and levels
	Adding a login message log

	Message routing

	Handling errors
	Displaying errors

	Caching
	Cache configuration
	Using a file-based cache
	Cache dependencies
	Query caching
	Fragment caching
	Declaring fragment caching options
	Using fragment cache

	Page caching

	General performance tuning tips
	Using APC
	Disabling the debug mode
	Using yiilite.php
	Using caching techniques
	Enabling schema caching

	Summary

	Index

